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Lineárny posuvný register

zn 1

zn+1

zn−1 zz2

n−1c ncc1 2c

The sequenc c1, c2, . . . , cn – is called a tap sequence

zn+1 = c1zn ⊕ c2zn−1 ⊕ · · · ⊕ cn−1z2 ⊕ cnz1 (1)

Maximum perions of LSFR of the length n is 2n − 1.

A connection polynomial – is a polynomial over Z2:

1 + c1x + c2x
2 + c3x

3 + · · ·+ cnx
n

A primitiv polynomial of deree n is such a polynomial of degree n

which
is irredicible
is a divisor of polynomial x2

n−1

+ 1
does not divide any polynomial of the form xd + 1, where d is a
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Connection Polynomial

It holds:
LSFR of the length n has maximum period 2n − 1 if and only if its
connection polynomial is primitive.

A singular LFSR is such a LFSR whose length is greater then the degree
of its connection polynomial.

Singular LFSR-s are not used in cryptography.

It is an algoritmically solvable problem to discover whether a given
polynomial is a primitive polynomial.

However, finding of primitive polynomials is a hard problem.
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An Example How a LSFR Works
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LFSR in a Spreadsheet

A B C D E

1 0 0 0 0 0
2 =MOD(A1+D1+ E1;2) =A1 =B1 =C1 =D1

Second row of this table will be copied into several following rows.

The idea:
To use outpit bits of LFSR as a stream ofpseudo-random binary numbers.

Key

Original setup or LFSR – n bits z1, z2, . . . , zn
Setup of tap sequence – n bites c1, c2, . . . , cn

If we know tap sequence c1, c2, . . . , cn and a sequence of n bit
z1, z2, . . . , zn from LFSR, then we can easily compute all following bits
using equation (??).

zn+1 = c1zn⊕c2zn−1⊕· · ·⊕cn−1z2⊕cnz1 (1)
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Attack Against LFSR If 2n Bits Are Known

If we know only the length of LFSR we proceed as follows:
Suppose that we know the lnegth n of LFSR and 2n output bits:

z2n, z2n−1, . . . , z2, z1

Bits zn+1, zn+2, . . . , z2n were generate step by step, every one from them using
the equation (??) and n − 1 predecessors as follows:

zn+1 = c1zn ⊕ . . . ⊕ cn−1z2 ⊕ cnz1

zn+2 = c1zn+1 ⊕ . . . ⊕ cn−1z3 ⊕ cnz2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
z2n = c1z2n−1 ⊕ . . . ⊕ cn−1xnzn − 1⊕ cnzn







zn zn−1 . . . z1

zn−1 zn−2 . . . z2

. . . . . . . . . . . . . . . . . . . . . .

z2n−1 z2n−2 . . . zn
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Colorary: Cryptography using LFSR is very weak and must not be used.
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Attempths to Improve the Safety of LFSR

Replacement of ⊕ by a non linear function:

zn 1

zn+1

zn−1 zz2

f( ) − nonlinar function

Drawback: Such nelinear registers ara hard to study. It is difficult to
prove their properties e.g. existence of short cycles, e.t.c.

To use otuputs from several LSFRs as inputs into non linear function.

LFSR1    L1

LFSR2    L2

LFSR2    L3

LFSRn    Ln

f

Stanislav Palúch, Fakula riadenia a informatiky, Žilinská univerzita Linear Feedback Shift Registers – LFSR 7/1



Geffe Generator
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&

LFSR2    L2
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LFSR3    L3

z = x1.x2 ⊕ (1⊕ x2).x3

P[z = x1] = P[x2 = 1]
︸ ︷︷ ︸
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Geffe Generator

Other way how to determine probabilities P[xi = z ].

Table of Otupt Function z = x1.x2 ⊕ (1⊕ x2).x3

x1 x2 x3 z = x1.x2 ⊕ (1⊕ x2).x3 x1 = z x3 = z

0 0 0 0 + +
0 0 1 1 - +
0 1 0 0 + +
0 1 1 0 + -
1 0 0 0 - +
1 0 1 1 + +
1 1 0 1 + -
1 1 1 1 + +

It follows from this table that searched probabilities are

P[x1 = z ] =
6

8
=

3

4
, P[x3 = z ] =

6

8
=

3

4
.
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Correlation Attack

Key of Geffe Generator – Start up contents of registers LFSR1, LFSR2 and
LFSR3 – i.e. (2L1 − 1)(2L2 − 1)(2L3 − 1) possibilities.
Therefore a brute force attack would require at most the same number of
attempts.
Correlation attack:

We have a sequence z = z1, z2, . . . , zk , . . . from output of Geffe generator.
Step 1.:

Fill LFSR2 and LFSR3 with arbitrary sequences of bits and then set up LFSR1
from 00...01 up to 11...11 untill the number of equalities with sequence
z = z1, z2, . . . , zk , . . . rises to approximately 3

4
.

In this moment LFSR1 will be set up exactly alike as it was in the beginning of
sequence z.
Step 2.:

The initial state of LFSR3 set by the same way.

Step 3.:

Calculate initial state of LFSR2 using initial states of LSFR1 and LSFR3 and

the equation z = x1.x2 ⊕ (1⊕ x2).x3.
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Correlation Attack

Correlation attack requires at most (2L1 − 1) + (2L3 − 1) attemptes,
instead of trying at most (2L1 − 1)(2L2 − 1)(2L3 − 1) possibilities of initial
set up of all three registers.

If registers LFSR1 and LFSR3 are long enough this attack becomes
impracticable, however, existence of an attack with complexity
(2L1 − 1) + (2L3 − 1) compared to complexity of brute attack
(2L1 − 1)(2L2 − 1)(2L3 − 1) is considered as a serious weakness of this
system.

This principle can be used for arbitrary cryptosystem based on LFSRs
with arbitrary output function, if for output xi of i-th register and output
of cryptosystem it holds P[xi = z ] 6= 1

2 .
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Alternating Stop-and-go Generator – ASG

Another pseudorandom bits generator based on LFSFR-s is the alternating
stop-and-go generator.
Its design was published in 1987 by C. G. Günther.

&

&
LFSR1    L1

LFSR2    L2

LFSR3    L3

All LFSRs used should be regular registers all with maximum period.
Output of LFSR1 defines which of registers LFSR2, LFSR3 will shift in this
clock impus.
If the oputput of LFSR1 is 1, LFSR2 is clocked. Otherwise LFSR3 is clocked.
If LFSR1 is modified in such a way that after (L1 − 1) zeros it produces one
more zero, then the periond of this generator will be equal to

2L1 .(2L2 − 1).(2L3 − 1)

provided that L1, L2, L3 are two by two coprime.
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Alternating Stop-and-go Generator – ASG

Khazaei, S., Fischer, S., and Meier, W. published in 2007 an attack
against ATG with time complexity O(L2.22L/3) and the amount of output
needed to mount the attack O(22L/3) bits, where L is the size of the
shortest of the three LFSRs.

For L1, L2, L3 coprime, L1 ≈ L2 ≈ L3 ≈ 256 is the corresponding time
complexity of ASG equal to

O(2562.2512/3) ≈ O(216.2170) = O(2186).

ASG was patented, patent expired in Jun 15, 1993to failure to pay
maintenance fee.
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Shrinking Generator

The shrinking generator was published in Crypto 1993 by
D. Coppersmith, H. Krawczyk, and Y. Mansouris.
The shrinking generator uses two LFSRs.
LFSR1 of the size L1 generates output bits,
LFSR2 of the size L2 controls output of LFSR1.
Both LFSR1 and LFSR2 accept clock impulses at the same time and
produce bits ai , bi .

LFSR1    L1

LFSR2    L2

a i

bi

If bi = 1 then the output bit of shrinking generator is ai .
If bi = 0 then the the bit ai is discarded, nothing is output.
The period of this generator is

(2L1 − 1).(2L2 − 1)

provided that L1 and L2 are coprime
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Shrinking Generator

The great the disadvantage if shrinking enerator is that the generator’s
output rate varies irregularly.

Those irregularities can be used directly to determine the state of LFSR2.

This problem can be overcome by buffering the output.

There are currently no known attacks better than brute attack when the
feedback polynomials are secret.

If the feedback polynomials are known, the best known attack requires
less than L1.L2 bits of output.
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GSM A5 algoritmus

b11

9 1914

b2

11 2213 17

b3

i

11 2319

1 2posun(i) = b       T(b , b ,  b )3

LFSR1  − (19, 18, 17, 14, 0)
LFSR2  − (22, 21, 17, 13, 0)
LFSR3  − (23, 22, 19, 18, 0)

17

                                                                                                                                                                                                                                                                                                                                                                      

T (b1, b2, b3) =

{

0 ak (b1 + b2 + b3) ≥ 2

1 ak (b1 + b2 + b3) ≤ 1

shift(i) = bi ⊕ T (b1, b2, b3)
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Blum - Micalli generator, RSA generator

Blum - Micalli generator:
g , p two great secret primes

xi+1 = g xi mod p

bi =

{

1 ak xi <
p−1
2

0 inak

RSA generator:

p, q dve great secret primes
N = p.q

e coprime with s (p − 1)(q − 1)

xi+1 = xei mod N

bi = xi mod 2 (– the least sinificant bit xi )
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Statistical Hypothesis Testing

Suppose we are given a sequence of bits

b = b1, b2, . . . , bn

gained from a genuin random or pseudorandom number generator.
Our goal is to find if this sequence is usable in one time pad cryptography.

Folowint test can exclude sequences which are not suitable for
enciphering.

Principle of all text is as follows:

A hypotheses H is specified (e.g. ”P[bi = 1] = P[bi = 0] = 1
2”

– i. e. the probablility of 0 equals to the probablity of 1).

Select a significance level α, a probability threshold below which the
hypothesis H will be rejected in spite of the fact that it holds.
Common values are 5% and 1%.
( this is so calld an error of the first type).
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Statistical Hypothesis Testing

A random function X = f (b1, b2, . . . , bn) (called also a statisics) is
determined, which has a known probablility distribution f under the
assumptoin of validity of hypothes H
(wery often we use Student distribution f = χ2(k) with k degrees of
freedom or normal distribution f = N(0, 1)
An interval (a, b) – so called confidence interval is determined such
that P[X ∈ (a, b)] = 1− α.
A part of real axis (−∞, a〉 ∪ 〈b,∞) is called a critical region.
If X falls into the critical region, then we reject hypothesis H since a
not avaited event occured, provided H is valid.
If X falls into interval (a, b), then we do not reject hypotesis H.

Stanislav Palúch, Fakula riadenia a informatiky, Žilinská univerzita Linear Feedback Shift Registers – LFSR 19/1



Density of Distribution χ
2 for Various Degrees of Freedom
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Frequency Test

Let us have a sequence of bits b = b1, b2, . . . , bn.

n0 – number of zeros n1 – number of ones n = no + n1

Assume that b is a random sequence with the same probability of zeros
and ones. The statistics

X1 =
(n0 − n1)

2

n

has distribution χ2(1) with one degree of freedom and tested hypothesis
is that X1 = 0.
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Two-Bit Serial Test

Let us have a sequence of bits b = b1, b2, . . . , bn.

Let n00, n01, n10, n11 – numbers of appearence tuples 00, 01, 10, 11 in the
sequence b .

It holds: n00 + n01 + n10 + n11 = n − 1.

X2 =
4

n − 1

(
n200 + n201 + n210 + n211

)
− 2

n

(
n20 + n21

)
+ 1

Statistics X2 has probablility distribution χ2(2) with two degrees of
freedom for n ≥ 21 under assumption that probablilities of all mentioned
couples are equal.

Tested hypothesis is X2 = 0.
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Poker Test

Let us have a sequence of bits b = b1, b2, . . . , bn.

︸ ︷︷ ︸
m
1.

︸ ︷︷ ︸
m
2.

︸ ︷︷ ︸
m
3.

︸ ︷︷ ︸
m
4.

︸ ︷︷ ︸
m
5.

. . . . . . . . . . . . . . .
︸ ︷︷ ︸

m
(k−2).

︸ ︷︷ ︸
m

(k−1).

︸ ︷︷ ︸
m
k.

We divide the examined sequence bof the length n into k m-tuples. Clearly
k.m ≤ n.

Number m must be selekted inorder k ≥ 5.2m.

Every m-tuple of bits represents a number from 0 to 2m − 1.
Let us assign by ni the number m-tuples such they represent the number i in
binary notation for i = 0, 1, 2, . . . , 2m − 1.

X3 =
2m

k
.

(
2m−1∑

i=0

n
2
i

)

− k

Štatistics X3 has distribution χ
2(2m − 1) and tested hypothesis is X3 = 0.
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Runs Test

Block of the length n is a sequence of n ones in the sequence b fenced
from both sides by zero or beginning or end of the sequence b.
Gap of the length n is a sequence of n zeros in the sequence b fenced
from both sides by one or beginning or end of the sequence b.
Probablity of occurence of a block of the length i . . . 0 1 1 . . . 1

︸ ︷︷ ︸

i

0 . . .

in an endless random sequence with the same probablity of zeros and

ones is :
1

2i+2
. The same number hold for probablility o occurence of

a gap of the length i .

Awaited number of blocks (resp. gaps) of the length i in a n-element
sequence b is ei =

n−i+3
2i+2 .

Define statistics

X4 =

k∑

i=1

(Bi − ei )
2

ei
+

k∑

i=1

(Gi − ei )
2

ei

where k is the greatest number such that ei ≥ 5 and where Bi , Gi are
real numbers of blocks resp. gaps in the sequence b.
Statistics X4 has distribution χ2(2k − 2), tested hypothesis is X4 = 0.
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Autokorelation Test

Let us have a sequence of bits b = b1, b2, . . . , bn.
This test can reveal wheather the sequence b contains a periodical
component with period d .
Let d – be a fixed number, let 1 ≤ d ≤ [ n2 ]

d

A(d) =

n−d∑

i=1

bi ⊕ bi+d

X5 = 2.
A(d)− n − d

2√
n − d

Statistics X5 has a normal distribution N(0, 1).

Tested hypothesis is X5 = 0.
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FIPS 140–1 Statistic Test

Test is determined for string b containing 20000 bits.
1 Monobit test: 1 < n1 < 10346
2 Poker test pre m = 4: 1.03 < X3 < 57.4
3 Runs test.

For i = 1, 2, 3, 4, 5 Bi resp. Gi – the number of bloks resp. gaps of
the length i .
For i = 6 B6 resp. G6 the number of bloks resp. gaps of the length 6
and more.

i Dovolený rozsah Bi , Gi

1 2267 – 2733
2 1079 – 1421
3 502 – 748
4 223 – 402
5 90 – 223
6 90 – 223

4 Long run test. There must not exist a block or gap of the length 34
or more.
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