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Primitive Root - Primit́ıvny koreň

Let G be a multiplicative group and let g ∈ G be an element of G . Let N be
the smalest exponent such that gN = 1. We will say that N is the
multiplicative order of g , resp. g is an element of multiplicative order N.

A primitive root of a prime p is an integer g 6= 1 such that g(mod p) has
multiplicative order p − 1, i.e gp−1 ≡ 1 mod p.

More generally, if GCD(g , n) = 1 (g and n are relatively prime) and g is of
multiplicative order φ(n) modulo n (– i.e. gφ(n) ≡ 1 mod n where φ(n) is the
Euler’s totient function), then g is called a primitive root of n.

The first definition is a special case of the second since φ(p) = p − 1 for p
a prime.
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Primitive Root - Primit́ıvny koreň

Example.

Number 4 is not a primitive root of 5 resp. Z5 − {0} since multiplicative order
of 4 is 2 because 42 = 16 ≡ 1 mod 5.

Number 3 is a primitive root of Z5 since

3φ(5) = 35−1 = 34 = 81 ≡ 1 mod 5

while 32 = 9 ≡ 4 mod 5, 33 = 27 ≡ 2 mod 5.
Therefore φ(5) = 4 is the smalest exponent such that 34 ≡ 1 mod 5.

Number 2 is a primitive root of Z5 since

2φ(5) = 25−1 = 24 = 16 ≡ 1 mod 5

while 22 = 4 ≡ 4 mod 5, 23 = 8 ≡ 3 mod 5.
Therefore φ(5) = 4 is the smalest exponent such that 24 ≡ 1 mod 5.
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Primitive Root - Primit́ıvny koreň

Not every n has a primitive root !!!

Example.

Number n = 8 has no primitive root.
φ(8) = 4
For no even number g ∈ Z8 and no a > 1 it holds g a ≡ 1 mod 8.

Multiplicative orders of 3, 5 and 7 are all equal to 2 since
32 = 9 ≡ 1 mod 8, 52 = 25 ≡ 1 mod 8, 72 = 49 ≡ 1 mod 8.

Z8 does not contain an element g with multiplicative order equal to φ(8) = 4.
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Primitive Root - Primit́ıvny koreň

If n has a primitive root, then it has exactly φ(φ(n)) of them, which means
that if p is a prime number, then there are exactly φ(p − 1) incongruent
primitive roots of p.

For n=1, 2, ..., the first few values of φ(φ(n)) are

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 1 2 1 2 2 2 2 4 2 4 2 4 4 8

A number n has a primitive root

if it is of the form 2, 4, pa
, or 2pa

, where p is an odd prime and a ≥ 1.

The first few n for which primitive roots exist are

2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 22, ...

so the number of primitive root of order n for n=1, 2, ... are

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 1 1 2 1 2 0 2 2 4 0 4 2 0 0
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Primitive Root - Primit́ıvny koreň

Here is table of the primitive roots for the first few n for which a primitive root
exists:

n g(n)

2 1

3 = p1 2

4 3

5 = 51 2, 3

6 = 2 ∗ 31 5

7 = 71 3, 5

9 = 32 2, 5

10 = 2 ∗ 51 3, 7

11 = 111 2, 6, 7, 8

13 = 131 2, 6, 7, 11
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Discrete Logaqrithm Problem -DLP

Let G be a multiplicative group and let g ∈ G , h ∈ G are elements of G .
Discrete Logarithm Problem – DLP is to find a natural number x such that

g
x = h (1)
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Baby step – Giant step algorithm

Let G = (Zp − {0},⊗) be a group and let g ∈ G be an element of order
N ≥ 2. Let h ∈ G .
Input:

h, g , p, solve equation h ≡ g x mod p.
Step 1.

Let n = ⌈
√
N − 1⌉ (therefore n >

√
N − 1).

Step 2.

Create 2 lists.

g0, g1, g2, . . . , g i , . . . , gn−1

hg−0n, hg−1n, hg−2n, hg−3n, . . . , hg−jn, . . . , hg−(n−1)n

Step 3.

Find a match in the 2 lists. Say g i = hg−jn.
Then x = i + jn is the solution.

This algorithm solves the DLP in O(
√
N) steps.
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Baby step – Giant step algorithm

Let us solve the following digital logarithm problem

3x ≡ 57 mod 113 (2)

Then g = 3, p = 113, h = 57,
√
113 = 10.63 and n = ⌈10.63⌉ = 11.

i 0 1 2 3 4 5 6 7 8 9 10

3imod p 1 3 9 27 81 17 51 40 7 21 63

57.3−i∗nmod p 57 29 100 37 112 55 26 39 2 3

Since 3−1 ≡ 38 mod p, the last row of previous table can be calculated
by formula 57 ∗ 38i∗nmod p.

31 = 57 ∗ 3(−9∗11)

(31) ∗ (3(9∗11)) = 57

31+(9∗11) = 57

3100 = 57

x = 100
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Chinese remainder theorem

Let n1, n2, . . . , nk be integers greater than 1, which are often called
moduli or divisors.
Let us denote by N the product of the ni , i,e,:

N = n1.n2. . . . .nk .

The Chinese remainder theorem. Lete ni are pairwise coprime, let
a1, a2, . . . , ak are integers such that 0 ≤ ai < ni for every i .
Then there is one and only one integer x , such that 0 ≤ x < N and such
that the remainder of the integer division of x by ni is ai for every i .
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Chinese remainder theorem

This may be restated as follows in term of congruences:

Let n1, n2, . . . , nk be integers greater than 1.
Let us denote by N the product of the ni , i,e,:

N = n1.n2. . . . .nk .

If the ni are pairwise coprime, and if a1, a2, . . . , ak are any integers, then
there exists an integer x , 0 ≤ x < N such that

x ≡ a1 mod n1

x ≡ a2 mod n2
...

x ≡ ak mod nk

There exists a polynomial algorithm for computing such x .
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Chinese remainder theorem

We ant to solve first a system with two equations:

x ≡ a1 (mod n1) (3)

x ≡ a2 (mod n2), (4)

First solve the following equation with unknown r using extended Euklid’s
Algorithm.

n1 ∗ r ≡ 1 mod n2.

This equation has a solution since n1 and n2 are coprime.

Then n1.r = n2.s + 1 for some integer s

n1.r − n2.s = 1

We have after subtstituting m1 for r and m2 for −s
n1m1 + n2m2 = 1. (5)

Then the solution of the system (3), (4) is

x = a1n2m2 + a2n1m1 (6)

Indeed:

x = a1n2m2 + a2n1m1 = a1(1− n1m1) + a2n1m1 =

= a1 − a1n1m1 + a2n1m1 = a1 + (a2 − a1)n1m1 (7)

what implies that x ≡ a1 mod n1.
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Chinese remainder theorem

Let n1, n2, . . . , nk be integers greater than 1.
Let us denote by N the product of the ni , i,e,:

N = n1.n2. . . . .nk .

If the ni are pairwise coprime, and if a1, a2, . . . , ak are any integers, then there
exists an integer x , 0 ≤ x < N such that

x ≡ a1 mod n1

x ≡ a2 mod n2

...

x ≡ ak mod nk

Define bi =
N

ni
, set ci = b−1

i mod ni .

x ≡
k∑

i=1

aibici mod N (8)

is the solution of given system of equations.
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Pohling – Helmann Algorithm

Let G be a group, let g ∈ G an element of order N and suppose that N factors
into product of prime powers as

N = p
e1
1 .p

e2
2 . . . . .p

et
t . (9)

Pohlig – Hellman Algorithm
Input:

h, g , p, solve equation h ≡ g x mod p.
Step 1.

For each i , 1 ≤ i ≤ t, set gi ≡ gN/pei and hi ≡ hN/pei .
For every i use Baby step – Giant step algorithm to solve equation

g
yi
i = hi . (10)

Step 2.

For every i 1 ≤ i ≤ t use the Chinese Remainder Theorem to solve system of
equations

x ≡ y1 mod p
e1
1

x ≡ y2 mod p
e2
2

...

x ≡ yt mod p
et
t

Return x .
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RSA Algorithm – Key Generation Procedure

Alice executes the following procedure to calculate her pair of RSA keys

1 Select two distinct large primes p and q. Both primes have to be
kept in secrecy.

2 Compute N = p.q and φ(N) = (p − 1).(q − 1). φ(N) should be
secret.

3 Choose a public exponent e < φ(N), e coprime to φ(N).

4 Compute the private exponent d as e.d ≡ 1 mod φ(N).

5 Pair (e;N) is the public key – it can be published.

6 Pair (d ;N) serves as the secret private key.

7 Bob (or arbitrary participant in secret communication) encipheres his
message x < N as y = xe mod N.

8 Alice deciphires ciphertext y as x = yd mod N.

Primes p, q should be large – from 512 to 2048 bits.
How to find such numbers – choose a large number at random and test it
for primality.
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RSA Algorithm – Key Generation Procedure

Probability primality test
Fermat test

If c(M−1) 6≡ 1 mod M for some c , then M is defintely composed
number.

If c(M−1) ≡ 1 mod M for sufficiantly many numbers c , then M is
prime with great probability.

Phill Zimmermann used in PGP the following procedure for finding
wheather M is a prime:

Discarded M if it failed to get through test based on dividing by all
16-bit primes

Applied Fermat’s test for four values of the number c .

Drawback of Fermat test: The are liars called Carmichael numbers.
Carmichael’s number – is a composite number M, such that for all
c < M, c coprime to s M it holds cM−1 ≡ 1 mod M.

Miller-Rabin test can say that the examined number is surely composite

or prime with probability (1− 1

4t
).
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RSAlib – Key Generation Procedure

All RSA primes (as well as the moduli) generated by the RSALib have
the following form:

p = k ∗M + (65537a mod M) (11)

where integers k and a are unknown.
The integer M is known and equal to some primorial
M = Pn# – the product of the first n successive primes

Pn# =
n∏

i=1

Pi = 2 ∗ 3 ∗ 5 ∗ 7 ∗ 11 ∗ · · · ∗ Pn.

The value of M is related to the key size.
The value n = 39 (i.e., M = 2 ∗ 3 ∗ · · · ∗ 167) is used to generate primes
for an RSA key with a key size within the [512 – 960] interval.

n 39 71 126 225

key size [512− 960] [992− 1952] [1984− 3936] [3968− 4096]

Pn# P39# = 167# P71# = 353# P126# = 701# P225# = 1427#

size of M 219 b 475 b 971 b 1962 b
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RSAlib – Key Generation Procedure

RSA primes differ only in their values of a and k for keys of the same size.

The most important property of the keys is that the size of M is large
and almost comparable to the size of the prime p (e.g., M has 219 bits
for the 256-bit prime p used for 512-bit RSA keys).

Since M is large, the sizes of k and a are small (e.g., k has
256− 219 = 37 bits and a has 62 bits for 512-bit RSA).

Hence, the resulting RSA primes suffer from a signicant loss of entropy
(e.g., a prime used in 512-bit RSA has only 99 = 37+62 bits of entropy).

The pool from which primes are randomly generated is reduced
(e.g., from 2256 to 299 for 512-bit RSA).
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Fingerprinting

Let N = p.q.

N = (k ∗M + 65537a mod M)
︸ ︷︷ ︸

p

∗ (l ∗M + 65537b mod M)
︸ ︷︷ ︸

q

(12)

N ≡ 65537(a+b) ≡ 65537c mod M (13)

If there exists the discrete logarithm

c = log65537 N mod M (14)
then modulus N was probably generated by RSALib.

Discrete logarithm is a hard problem, however we can use Pohling-Hellman
algorithm effectively in special cases where M is a smooth number.

Size of multiplicative group Z∗

M is φ(M). Since M is a smooth number – having
only small factors, also φ(M) is a smooth number.

The order of subgroup G = [65537] of Z∗

M (subgroup generated by 65537) is a
divisor of φ(M) and therefore smooth number, too. Therefore
Pohling-Hellmann algorithm gives us result within miliseconds.

The probability that that a random 512-bit modulus will be incorrectly detected

as the RSAlib modulus is 2−154. This probability is even smaller for larger keys.
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Principle of attack

Principle ot this attack is to aply Coppersmith’s algorithm, which was
originaly proposed to find small roots of univariate modlular equations.

Coppersmith showed how to use his algorithm to factorize RSA modulus,
when high bits of p or q are known.
Let

N = (k ∗M + 65537a mod M)
︸ ︷︷ ︸

p

∗ (l ∗M + 65537b mod M)
︸ ︷︷ ︸

q

.

A naive approach would iterate over different options of 65537a mod M,
treating the value of 65537a mod M as known bits and apply
Coppersmith’s algorithm to find unknown k .

Complexity of this approach showed to be too large.
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Optimized method

In order to optimize the naive method, the authors replaced M by
another M ′ such that:

primes (p, q) are still of the form p = k ∗′ M + 65537a
′

mod M ′,
q = l ′ ∗M + 65537b

′

mod M ′ – i.e. M ′ must be a divisor of M

Coppersmith’s algorithm will find k for correct guess of a – enough
bits must be known (log2(M

′) > log2(N)/4))

overall time of the factorization will be minimal – number of
attempts (ordM′(65537)) and time per attempt (running time of
Coppersmith’s algorithm) should result in a minimal time.

There is a trade-off between the number of attempts and the
computational time per attempt as Coppersmith’s algorithm runs faster
when more bits are known.
Running time of Coppersmith’s algorithm can be estimated by M ′ and by
two parameters m and t.
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Coppersmith’s algorithm

Coppersmith’s algorithm will solve the equation

f (x) = x ∗M ′ + (65537a
′

mod M
′) = 0 mod N) (15)

resp. its equivalent form

x + (M ′−1
mod N) ∗ (65537a

′

mod M
′) = 0 mod N (16)

Coppersmith’s algorithm is based onthe LLL method of lattice base reduction.1

1There are two meanings of the term lattice. By the first one a lattice is a partially
ordered set L in which each two-element subset {a, b} ∈ L has a join (i.e. least upper
bound) and a meet (i.e. greatest lower bound), denoted by a ∨ b and a ∧ b.
By the second meaning a lattice is subgroup Λ of Rn

Λ =

{

n
∑

i=1

aivi |ai ∈ Z

}

where {v1, v2, . . . , vn, } is a basis of linear space Rn.
Coppersmith’s algorithm makes use of the second definition of a lattice and lattice
base reduction problem – finding an equivalent basis with short vectors. A. Lenstra, H.
Lenstra an L.Lovasz proposed LLL lattice base reduction algorithm solving lattice base
reduction problem in polynomial time.
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Optimized method

Input: N,M ′,m, t
Output: p – factor of N
c ′ = log65537 N mod M ′

ord ′ = ordM′(65537)

forall a′ ∈
[
c ′

2
,
c ′ + ord ′

2

]

do

f (x) =
(
x + (M ′−1

mod N) ∗ (65537a′ mod M ′)
)

mod N

(β,X ) = (.5, 2 ∗ Nβ/M′

)
k ′ = Coppersmith(f (x),N, β,m, t,X )
p = k ′ ∗M ′ + (65537a

′

) mod M ′

if N mod p = 0 then return p

end
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Optimized method

Key size M Size of MSize of M′ Naive BF # Our BF# Time per Worst case
attempts attempts attempt

ordM(65537)

2

ordM′ (65537)

2

512 b P39# = 167# 219.19 b 140.77 b 261.09 219.20 11.6 ms 1.93 CPU hours

1024 b P71# = 353# 474.92 b 285.19 b 2133.73 229.04 15.2 ms 97.1 CPU days

2048 b P126# = 701# 970.96 b 552.50 b 2254.78 234.29 212 ms 140.8 CPU years

3072 b P126# = 701# 970.96 b 783.62 b 2254.78 299.29 1159 sec2.84 ∗ 1025 years

4096 b P225# = 1427#1962.19 b1098.42 b 2433.69 255.05 1086 ms 1.28 ∗ 109 years

Table 1: Overview of the used parameters (original M and optimized M′)
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