
ŽILINSKÁ UNIVERZITA V ŽILINE

FAKULTA RIADENIA A INFORMATIKY

INFORMATION THEORY

Stanislav Palúch

ŽILINA, 2008

ŽILINSKÁ UNIVERZITA V ŽILINE, Fakulta riadenia a informatiky

Dvojjazyková publikácia slovensky - anglicky
Double - language publication Slovak - English

INFORMATION THEORY
Palúch Stanislav

Poďla slovenského originálu

Palúch Stanislav
TEÓRIA INFORMÁCIE
Vyd. Žilinská univerzita vŽiline/ EDIS - vydavatělstvo ŽU, Žilina, v tlači

Translation: Doc. RNDr. Stanislav Palúch, CSc.

Slovak version reviewed by: Prof. RNDr. Jan Černý, Dr.Sc., DrHc.,
Prof. RNDr. Beloslav Riečan,Dr.Sc.,
Prof. Ing. Mikuláš Alex́ık, CSc.

English version reviewed by: Ing. Daniela Stredákova

Vydala Žilinská univerzita vŽiline, Žilina 2008
Issued by University of Žilina, Žilina 2008

c© Stanislav Palúch, 2008
c© Translation: Stanislav Palúch, 2008
Tlač / Printed by
ISBN
Vydané spodporou Európskeho sociálneho fondu,
projekt SOP ĽZ - 2005/NP1-007
Issued with support of European Social Foundation,
project SOP ĽZ - 2005/NP1-007

Contents

Preface 5

1 Information 9

1.1 Ways and means of introducing information 9

1.2 Elementary definition of information 15

1.3 Information as a function of probability 18

2 Entropy 21

2.1 Experiments . 21

2.2 Shannon’s definition of entropy 22

2.3 Axiomatic definition of entropy 24

2.4 Another properties of entropy . 32

2.5 Entropy in problem solving . 34

2.6 Conditional entropy . 42

2.7 Mutual information of two experiments 47

2.7.1 Summary . 50

3 Sources of information 51

3.1 Real sources of information . 51

3.2 Mathematical model of information source 52

3.3 Entropy of source . 55

3.4 Product of information sources 60

3.5 Source as a measure product space* 63

4 Coding theory 71

4.1 Transmission chain . 71

4.2 Alphabet, encoding and code . 72

4.3 Prefix encoding and Kraft’s inequality 74

4.4 Shortest code - Huffman’s construction 77

4.5 Huffman’s Algorithms . 78

4.6 Source Entropy and Length of the Shortest Code 79

4.7 Error detecting codes . 82

4.8 Elementary error detection methods 87

4.8.1 Codes with check equation mod 10 88

4.8.2 Checking mod 11 . 90

4.9 Codes with check digit over a group* 93

4.10 General theory of error correcting codes 101

4.11 Algebraic structure . 107

4.12 Linear codes . 112

4.13 Linear codes and error detecting 121

4.14 Standard code decoding . 125

4.15 Hamming codes . 130

4.16 Golay code* . 134

5 Communication channels 137

5.1 Informal notion of a channel . 137

5.2 Noiseless channel . 138

5.3 Noisy communication channels 139

5.4 Stationary memoryless channel 140

5.5 The amount of transferred information 146

5.6 Channel capacity . 148

5.7 Shannon’s theorems . 152

Register 152

References 156

CONTENTS 5

– Where is wisdom?
– Lost in knowledge.
– Where is knowledge?
– Lost in information.
– Where is information?
– Lost in data.

T. S. Eliot

Preface

The mankind, living the third millennium, comes to what can be described
as information age. We are (and we will be) increasingly overflown with abun-
dance of various information. Press, radio, television with their terrestrial and
satellite versions and lately Internet are sources of more and more information.
A lot of information originates from activities of state and regional authorities,
enterprises, banks, insurance companies, various funds, schools, medical and
hospital services, police, security services and citizens themselves.

Most frequent operations with information is its transmission, storage, pro-
cessing and utilization. The importance of the protecting of information against
disclosure, stealing, misuse and unauthorised modification grows significantly.

Technology of transmission, storing and processing of information has a cru-
cial impact on development of human civilisation. There are several information
revolutions described in literature.

The origin of speech is mentioned as the first information revolution. Human
language became a medium for handover and sharing information among various
people. Human brain was the only medium for storage of information.

The invention of script is mentioned as the second information revolution.
The information was transferred only verbally by tradition until it could be
stored and carried forward through space and time. This had the consequence
that the civilisations which invented a written script started to develop more
quickly than until then similarly advanced communities – to these days there
are some forgotten tribes living as in the stone age.

The third information revolution was caused by the invention of the
printing press (J. Gutenberg, 1439). Gutenberg’s printing technology spread
rapidly throughout Europe and has made information accessible to many

6 CONTENTS

people. Knowledge and culture of people have risen as basic fundamentals for
the industrial revolution and for the origin of modern industrial society.

The fourth information revolution is related to the development of com-
puters and communication technique and their capability to store and process
information. The separation of information from its physical carrier during
transmission and enormous capacity of memory storage devices along with fast
computer processing and transmitting is considered as a tool of boundless con-
sequences.

On the other hand, organization of our contemporary advanced society is
much more complicated. Globalization is one of specific features of present years.
Economics of individual countries are not separated anymore – international
corporations are more and more typical. Most of today’s complicated products
is composed from parts coming from many parts of world.

Basic problems of countries surpass through their borders and grow into
worldwide issues. Protecting the environment, global warming, nuclear energy,
unemployment, epidemic prevention, international criminality, marine reserves,
etc., are examples of such issues.

The solving of such issues requires a coordination of governments, manage-
ments of large enterprises, regional authorities and citizens which is not possible
without a transmission of information among the mentioned subjects. The con-
struction of efficient information network and its optimal utilization is one of
duties of every modern country. The development and build up of communica-
tion networks are very expensive and that is why we face very often the question
whether existing communication line is exploited to its maximum capacity, or if
it is possible to make use of an optimization method for increasing the amount
of transferred information.

It was not easy to give a qualified answer to this question (and it is not
easy up to now). The application of an optimization method involves creating
a mathematical model of information source, transmission path, and processes
that accompany the transmission of information. These issues appeared during
the World War II and become more and more important ever since. It was
not possible to include them into any established field of mathematics. There-
fore a new branch of science called information theory had to be founded (by
Claude E. Shannon). The information theory was initially a part of mathemat-
ical cybernetics which grew step by step into a younger scientific discipline –
informatics.

CONTENTS 7

The information theory distinguishes the following phases in a transfer of
information:

• transmitting messages from information source

• encoding messages in encoder

• transmission through information channel

• decoding messages in decoder

• receiving messages in receiver

The first problem of the information theory is to decide which objects carry
an information and how to quantify the amount of information. The idea to
identify the amount of information with the corresponding data file size is wrong,
since there are many ways of storing the same information resulting in various
file sizes (e. g., using various software compression utilities PK-ZIP, ARJ, RAR,
etc.).

We will see that it is convenient to assign information to events of some
universal probability space (Ω,A, P). Most of books on the information theory
start with the Shannon - Hartley formula I(A) = − log2 P (A) without any
motivation. A reader of pioneering papers about the information theory can
see that the way to this formula was not straightforward. In the first chapter
of this book, I aim to show this motivation. In addition to the traditional
way of assigning information to events of some probablility space, I show (for
me extraordinary beautiful) the way suggested by Černý and Brunovský [4] of
introducing information without probability.

The second chapter is devoted to the notion of entropy of a finite partition
A1, A2, . . . , An of universal space of elementary events Ω. This entropy should
express the amount of our hesitation – uncertainty before executing an exper-
iment with possible outcomes A1, A2, . . . , An. Two possible ways of defining
entropy are shown, both are leading to the same result.

The third chapter studies information sources, their properties and defines
the entropy of information sources.

The fourth chapter deals with encoding and decoding of messages. The main
purpose of encoding is to make the alphabet of the message suitable for trans-
mission over a channel. Other purposes of encoding are compression, ability to
reveal certain errors, or to repair a certain number of errors. Compression and
error-correcting property are contradictory requirements and it is not easy to
comply with them. We will see that many results of algebra, finite groups, rings,
and field theory, and finite linear space theory is very useful for modelling and

8 CONTENTS

solving encoding problems. The highlight of this chapter is the fundamental
source coding theorem: The source entropy is the lower bound of the average
value of length of binary compressed messages from this source.

The information channel can be modelled by means of elementary probability
theory. In this book I constrain myself to the simplest memoryless stationary
channel since such a channel describes common frequent channels and can
be relatively easy modelled by elementary mathematical means. I introduce
three definitions of channel capacity. For memoryless stationary channels all
definitions lead to the same value of capacity.

It shows that messages from a source with the entropy H can be transferred
through a channel with the capacity C, ifH < C. This fact is exactly formulated
in two Shannon theorems.

This book contains fundamental definitions and theorems from the fields of
information theory and coding. Since this publication is targeted to engineers
in informatics I skip complicated proofs – the reader can find them in cited
references. All proofs in this book are finished by the symbol �, complicated
sections that can be skipped without loss of continuity are marked by the
asterisk.

I wish to thank prof. J. Černý, prof. B. Riečan and prof. M. Alex́ık for their
careful readings, suggestions and correctings many errors.

I am fascinated by the information theory, because it puts together purpose-
fully and logically results of continuous and discrete, deterministic and proba-
bilistic mathematics – probability theory, measure theory, number theory, and
algebra into one comprehensive, meaningful, and applicable theory. I wish the
reader will have the same aesthetic pleasure, when reading this book, as I had
while writing it.

Author.

Chapter 1

Information

1.1 Ways and means of introducing information

Requiring an information about the departure of IC train TATRAN from Žilina
for Bratislava, we can get it exactly in the form of the following sentence:
”IC train Tatran for Bratislava departs from Žilina at 15:30.” A friend not
remembering exactly can give the following answer: ”I do not remember exactly,
but the departure is surely between 15:00 and 16:00.”

A student announces the result of an exam: ”My result of the exam from
algebra is B.” Or only shortly: ”I passed the exam from algebra.”

At the beginning of football match a sportscaster informs: ”I estimate the
number of football fans from 5 to 6 thousands.” After obtaining the exact data
from organizers he puts more exactly: ”The organizers sold 5764 tickets.”

Each of these propositions carries a certain amount of information with it.
We intuitively feel that the exact answer about the train departure (15:30)
contains more information than that one of the friend (between 15:00 and 16:00)
although even the second one is useful. Everyone will agree that the proposition
”Result of the exam is B” contains more information than mere ”I passed the
exam.”

The possible departures of IC train Tatran are 00:00, 00:01, 00:03, . . . , 23:58,
23:59 – there exist 1440 possibilities. There are 6 possibilities of the result of
exam (A, B, C, D, E, FX). It is easier to guess the result of an exam than the
exact departure time of a train.

10 CHAPTER 1. INFORMATION

Our intuition says us that the exact answer about the train departure gives
us more information than the exact answer about the result of an exam. The
question rises how to quantify the amount of information.

Suppose that information will be defined as a real function I : A → R (where
R is the set of real numbers), assigning a non negative real number to every
element from the set A.

The first problem is in the specification of the set A. At the first glance
it could seem convenient to take the set of all propositions1 for the set A.
Working with propositions is not very comfortable. We would rather work with
more simple and more standard mathematical objects.

Most of information–carrying propositions is a sentence in the form: ”Event
A occurred.”, resp., ”Event A will occur.”

The event A in the information theory can be defined similarly as in the
probability theory as a subset of a set Ω where Ω is the set of all possible
outcomes, sometimes called sample space, or universal sample space2.

In cases, when Ω is an infinite set, certain theoretical difficulties related
to measurability of its subset A ⊆ Ω can occur3. As we will see later, the
information of a set A is a function of its probability measure. Therefore we
restrict ourselves to such a system of subsets of Ω for which we are able to
assign their measure. It shows that such system of subsets of Ω contains the
sample space Ω and is closed under complementation, and countable unions of
its members.

1Proposition is a statement – a meaningful declarative sentence – for which it makes sense
to ask whether it is true or not.

2It is convenient to imagine that the set Ω is the set of all possible outcomes for all universe
and every time. However, if the reader has difficulties with the idea of such broad universal
sample space, he or she can consider that Ω is the set of all possible outcomes different for
every individual instance – e. g. when flipping a coin Ω = {0, 1}, when studying rolling a die
Ω = {1, 2, 3, 4, 5, 6}, etc.
Suppose that for every A ⊆ Ω there is a function χA : Ω → {0, 1} such that if ω ∈ A, then
χA(ω) = 1, if ω /∈ A then χA(ω) = 0.

3A measurable set is such subset of Ω which can be assigned a Lebesgue measure. It
was shown that subsets of the set R of all real numbers exits that are non measurable. For
such nonmeasurable sets it is not possible to assign their probability and therefore we restrict
ourselves only to measurable sets.
However, the reader does not need to concern himself about nonmeasurability of sets because
all instances of nonmeasurable sets were created by means of axiom of choice. Therefore all
sets used in practice are measurable.

1.1. WAYS AND MEANS OF INTRODUCING INFORMATION 11

Definition 1.1. Let Ω be a nonempty set called sample space or universal
sample space. σ-algebra of subsets of sample space Ω is such a system A of
subsets of Ω, for which it holds:

1. Ω ∈ A

2. If A ∈ A then AC = (Ω−A) ∈ A

3. If An ∈ A for n = 1, 2, . . . , then

∞⋃

n=1

An ∈ A.

σ-algebra A contains the sample space Ω. Furthermore, it contains with any
finite or infinite sequence of sets, their union, and with every set it contains its
complement, too. It can be easily shown that σ-algebra contains the empty set
∅ (complement of Ω) and with any finite or infinite sequence of sets it contains
their intersection, too.

Now our first problem is solved. We will assign information to all elements
of σ-algebra of some sample space Ω.

The second problem is how to define a real function I : A → R (where R

is the set of all real numbers) in such a way that the value I(A) for A ∈ A
expresses the amount of information contained in the message ”The event A
occurred.”

We were in analogical situation when we introduced the probability on
σ-algebra A. There are three ways how to define the probability – the elemen-
tary way, the axiomatic way and the way making use of the notion of normalized
measure on measurable space (Ω,A).

The analogy of elementary approach will do. This approach can be charac-
terised as follows:

Suppose that the sample space is the union of finite number n mutually
disjoint events:

Ω = A1 ∪A2 ∪ · · · ∪An .

Then the probability of each of them is 1
n – i. e., P (Ai) = 1

n for every
i = 1, 2, . . . , n.
σ-algebra A will contain the empty set ∅ and all finite unions of the type

A =

m⋃

k=1

Aik
, (1.1)

where Aik
6= Ail

for k 6= l. Then every set A ∈ A of the form 1.1 is assigned
the probability P (A) = m

n . This procedure can be used also in more general

12 CHAPTER 1. INFORMATION

case when the sets A1, A2, . . . , An are given arbitrary probabilities p1, p2, . . . , pn

where p1 + p2 + · · ·+ pn = 1. In this case the probability of the set A from 1.1
is defined as P (A) =

∑m
k=1 pik

.
Additivity is an essential property of probability – for every A,B ∈ A such

that A∩B = ∅ it holds P (A∪B) = P (A)+P (B). However, for information I(A)
we expect that if A ⊆ B then I(B) ≤ I(A), i. e., that information of ”smaller”
event is greater or equal than the information of the ”larger” one. This implies
that if I(A ∪ B) ≤ I(A), I(A ∪ B) ≤ I(B), and therefore for non-zero I(A),
I(B) it cannot hold I(A ∪B) = I(A) + I(B).

Here is the idea of further procedure:
Since binary operation

+ : R× R→ R

is not suitable for calculation the information of the disjoint union of two sets
using their informations we try to introduce other binary operation:

⊕ : R
+
0 × R

+
0 → R

+
0 ,

(where R
+
0 is the set of all non-negative real numbers) which expresses the

information of disjoint union of two sets A, B as follows:

I(A ∪B) = I(A)⊕ I(B).

We do not know, of course, whether such an operation ⊕ even exists and, if
yes, whether there are more such operations and, if yes, how one such operation
differs from the another.

Note that the domain of operation ⊕ is R
+
0 ×R

+
0 (it suffices that ⊕ is defined

only for pairs of non negative numbers).
Let us make a list of required properties of information:

1. I(A) ≥ 0 for all A ∈ A (1.2)

2. I(Ω) = 0 (1.3)

3. If A ∈ A, B ∈ A, A ∩B = ∅, then I(A ∪B) = I(A) ⊕ I(B) (1.4)

4. If An ր A =
∞⋃

i=1

Ai, or An ց A =
∞⋂

i=1

Ai, then I(An)→ I(A). (1.5)

Property 1. says that the amount of information is non-negative number, pro-
perty 2. says that the message ”Event Ω occurred.” carries none information.
Property 3. states how the information of disjoint union of events can be

1.1. WAYS AND MEANS OF INTRODUCING INFORMATION 13

calculated using informations of both events and operation ⊕, and the last
property 4. says4 that the information is in certain sense ”continuous” on A.

Let A, B be two events with informations I(A), I(B). It can happen, that
the occurence of one of them gives no information about the other. In this case
the information I(A ∩B) of the event A ∩B equals to the sum of informations
of both events. This is the motivation for the following definition.

Definition 1.2. The events A, B are independent if it holds

I(A ∩B) = I(A) + I(B) . (1.6)

Let us make a list of required properties of operation ⊕:

Let x, y, z ∈ R
+
0 .

1. x⊕ y = y ⊕ x (1.7)

2. (x⊕ y)⊕ z = x⊕ (y ⊕ z) (1.8)

3. I(A)⊕ I(AC) = 0 (1.9)

4. ⊕ : R
+
0 × R

+
0 → R

+
0 is a continuous function of two variables (1.10)

5. (x+ z)⊕ (y + z) = (x⊕ y) + z (1.11)

Properties 1 and 2 follow from the commutativity and the associativity of set
operation union. Property 3 can be derived form the requirement I(Ω) = 0 by
the following sequence of identities:

0 = I(Ω) = I(A ∪AC) = I(A)⊕ I(AC)

The property 4 – continuity – is a natural requirement following from the
requirement (1.5).

It remains to explain the requirement 5. Let A, B, C are three events such
that A, B are disjointm, and A, C are independent, and B, C are independent.

If the message ”Event A occurred.” says nothing about the event C and
the message ”Event B occurred.” says nothing about the event C then also the
message ”Event A ∪B occurred.” says nothing about the event C. Thus events
A ∪B and C are independent.

4The notation An ր A means that A1 ⊆ A2 ⊆ A3, . . . and A =
S

∞

i=1
Ai. Similarly

An ց A means that A1 ⊇ A2 ⊇ A3, . . . and A =
T

∞

i=1
Ai. I(An) → I(A) means that

limn→∞ I(An) = I(A).

14 CHAPTER 1. INFORMATION

Denote x = I(A), y = I(B), z = I(C) and calculate the information
I [(A ∪B) ∩C)]

I [(A ∪B) ∩ C)] = I(A ∪B) + I(C) = I(A)⊕ I(B) + I(C) = x⊕ y + z (1.12)

I [(A ∪B) ∩C)] = I [(A ∩C) ∪ (B ∩ C)] = I(A ∩ C)⊕ I(B ∩ C) =

= [I(A) + I(C)]⊕ [I(B) + I(C)] = (x+ z)⊕ (y + z) (1.13)

The property 5 follows from comparing of right hand sides of (1.12), (1.13).

Theorem 1.1. Let a binary operation ⊕ on the set R
+
0 fulfills axioms (1.7) till

(1.11). Then

either ∀x, y ∈ R
+
0 x⊕ y = min{x, y}, (1.14)

or ∃k > 0 ∀x, y ∈ R
+
0 x⊕ y = −k log2

(

2−
x
k + 2−

y
k

)

. (1.15)

Proof. The proof of this theorem is complicated, the reader can find it in [4]. �

It is interesting that (1.14) is the limit case of (1.15) for k → 0+.
First let x = y and then min{x, y} = x. Then

− k log2

(

2−
x
k + 2−

y
k

)

= −k log2

(
2.2−

x
k

)
=

= −k log2

(

2(− x
k +1)

)

= −k.(−
x

k
+ 1) = x− k

Now it is seen that the last expression converges toward x for k → 0+. Let
x > y then min{x, y} = y. It holds:

−k log2

(

2−
x
k + 2−

y
k

)

= −k log2

(

2−
y
k .(2

y−x
k + 1)

)

= y − k. log2

(

2
y−x

k + 1
)

To prove the theorem it suffices to show that the second term of the last
difference tends to 0 for k → 0+. The application of l’Hospital rule gives

lim
k→0+

k. log2

(

2
y−x

k + 1
)

= lim
k→0+

log2

(

2
y−x

k + 1
)

1
k

=

= lim
k→0+

2(y−x)/k . ln(2).(y−x)
(2(y−x)/k+1)/k2

1
k2

= ln(2)(y − x). lim
k→0+

2(y−x)/k

2(y−x)/k + 1
= 0

since (y − x) < 0, (y − x)/k → −∞ for k→ 0+, and thus 2(y−x)/k → 0.
Therefore limk→0+ −k log2

(
2−

x
k + 2−

y
k

)
= min{x, y}.

1.2. ELEMENTARY DEFINITION OF INFORMATION 15

Theorem 1.2. Let x⊕ y = −k log2

(
2−

x
k + 2−

y
k

)
for all nonnegative real x, y.

Let x1, x2, . . . , xn are nonnegative real numbers. Then

n⊕

i=1

xi = x1 ⊕ x2 ⊕ · · · ⊕ xn = −k log2

(

2−
x1
k + 2−

x2
k + · · ·+ 2−

xn
k

)

(1.16)

Proof. The proof by mathematical induction on n is left for the reader. �

1.2 Elementary definition of information

Having defined the operation ⊕ we can try to introduce the information in
similar way as in the case of elementary definition of probability.
Let A = {A1, A2, . . . , An} be a partition of the sample space Ω, into n events
with equal information, i. e., let

1. Ω =

n⋃

i=1

Ai, where Ai ∩Aj = ∅ for i 6= j (1.17)

2. I(A1) = I(A2) = · · · = I(An) = a for i 6= j (1.18)

We want to evaluate the value of a. It follows from (1.17), (1.18):

0 = I(Ω) = I(A1)⊕ I(A2)⊕ · · · ⊕ I(An) = a⊕ a⊕ · · · ⊕ a
︸ ︷︷ ︸

n−times

=

n⊕

i=1

a (1.19)

0 =
n⊕

i=1

a =

=

min{a, a, . . . , a} = a if x⊕ y = min{x, y}

−k log2

2−
a
k + · · ·+ 2−

a
k

︸ ︷︷ ︸

n−times

 if x⊕ y = −k log2

(
2−

x
k + 2−

y
k

) (1.20)

For the first case
⊕n

i=1 = a = 0 and hence the information of every event of the
partition {A1, A2, . . . , An} is zero. This is not an interesting result and there is
no reason to deal with it further.

16 CHAPTER 1. INFORMATION

For the second case

n⊕

i=1

a = −k log2

2−
a
k + · · ·+ 2−

a
k

︸ ︷︷ ︸

n−times

 = −k log2

(

n.2−a/k
)

= a− k log2(n) = 0

From the last expression it follows:

a = k. log2(n) = −k. log2

(
1

n

)

(1.21)

Let the event A be union of m mutually different events Ai1 , Ai2 , . . . , Aim ,
Aik
∈ A for k = 1, 2, . . .m. Then

I(A) = I(Ai1)⊕ I(Ai2)⊕ · · · ⊕ I(Aim) = a⊕ a⊕ · · · ⊕ a
︸ ︷︷ ︸

m–times

=

= −k. log2

2−a/k + 2−a/k + · · ·+ 2−a/k

︸ ︷︷ ︸

m–times

 = −k log2

(

m.2−a/k
)

=

= −k. log2(m)− k. log2

(

2−a/k
)

= −k. log2(m)− k. (−a/k) =

= −k. log2(m) + a = −k. log2(m) + k. log2(n) =

= k. log2

(n

m

)

= −k. log2

(m

n

)

(1.22)

Theorem 1.3. Let A = {A1, A2, . . . , An} be a partition of the sample space Ω
into n events with equal information. Then it holds for the information I(Ai)
of every event Ai i = 1, 2, . . . , n:

I(Ai) = −k log2

1

n
. (1.23)

Let A = Ai1 ∪ Ai2 ∪ · · · ∪ Aim be an union of m mutually different events of
partition A, i. e., Aik

∈ A, Aik
6= Ail

for k 6= l. Let I(A) be the information
of A. Then:

I(A) = −k log2

m

n
. (1.24)

1.2. ELEMENTARY DEFINITION OF INFORMATION 17

Let us focus our attention to an interesting analogy with elementary defini-
tion of probability. If the sample space Ω is partitioned into n disjoint events
A1, A2, . . . , An with equal probability p then this probability can be calculated
from the equation

∑n
i=1 p = n.p = 1 and hence P (Ai) = p = 1/n. If a set A is

a disjoint union of m sets of partition A then its probability is P (A) = m/n.

When introducing the information, information a = I(Ai) of every event
Ai is calculated from the equation (1.20) from where we obtain I(Ai) = a =
−k. log2(1/n). The information of a set A which is a disjoint union of m events
of the partition A is I(A) = −k. log2 (m/n).

Now it is necessary to set up the constant k. This depends on the choice of
the unit of information. Different values of parameter k correspond to different
units of information. (The numerical value of distance depends on chosen units
of length – meters, kilometers, miles, yards, etc.)

When converting logarithms to base a to logarithms to base b we can use
the following well known formula:

logb(x) = logb(a). loga(x) =
1

loga(b)
. loga(x). (1.25)

So the constant k and the logarithm to base 2 could be replaced by the
logarithm to arbitrary base in formulas (1.21), (1.22). This was indeed used by
several authors namely in the older literature on the information theory where
sometimes decimal logarithm appears in evaluating the information.

The following reasoning can by useful for determining the constant k. Com-
puter technique and digital transmission technique use for data transfer in most
cases binary digits 0 and 1. It would be natural if such a digit would carry one
unit of information. Such unit of information is called 1 bit.

Let Ω = {0, 1} be the set of values of a binary digit, let A1 = {0},
A2 = {1}. Let both the sets A1, A2 carry information a. We want that
I(A1) = I(A2) = a = 1. It holds 1 = a = k. log2(2) = k according to (1.21).

If we want that (1.21) expresses the amount of information in bits we have
to set k = 1. We will suppose from now on that information is measured in bits
and hence k = 1.

18 CHAPTER 1. INFORMATION

1.3 Information as a function of probability

When introducing the information in elementary way, we have shown that the
information of an event A which is disjoint union of m events of a partition
Ω = A1 ∪ A2 ∪ · · · ∪ An is I(A) = − log2(m/n) while the probability of the
event A is P (A) = m/n. In this case we could write I(A) = − log2 (P (A)). In
this section we will try to define the information from another point of view by
means of probability.

Suppose that the information I(A) of an event A depends only on its
probability P (A), i. e., I(A) = f(P (A)) and that the function f does not
depend on the corresponding probability space (Ω,A, P).

We will study now what functions are eligible to stand in expression
I(A) = f(P (A)). We will show that the only possible function is the function
f(x) = −k. log2(x). We will use the method from [5].

First, we will give a generalized definition of independence of finite o infinite
sequence of events.

Definition 1.3. The finite or infinite sequence of events {An}n is called se-
quence of (informational) independent events if for every finite subse-
quence Ai1 , Ai2 , . . . , Aim holds

I

(
m⋂

k=1

Aik

)

=

m∑

k=1

I (Aik
) . (1.26)

In order that information may have ”reasonable” properties, it is necessary
to postulate that the function f is continuous, and that events which are
independent in probability sense are independent in information sense, too, and
vice versa.

This means that for a sequence of independent events A1, A2, . . . , An it holds

I(A1 ∩A2 ∩ · · · ∩An) = f(P (A1 ∩A2 ∩ · · · ∩An)) = f

(
n∏

i=1

P (Ai)

)

(1.27)

and at the same time

I(A1 ∩A2 ∩ · · · ∩An) =
n∑

i=1

I(Ai) =
n∑

i=1

f (P (Ai)) (1.28)

1.3. INFORMATION AS A FUNCTION OF PROBABILITY 19

Left hand sides of both last expressions are the same, therefore

f

(
n∏

i=1

P (Ai)

)

=

n∑

i=1

f (P (Ai)) (1.29)

Let the probabilities of all events A1, A2, . . . , An are the same, let P (Ai) = x.
Then f(xn) = n.f(x) for all x ∈ 〈0, 1〉. For x = 1/2 we have

f(xm) = f

(
1

2m

)

= m.f

(
1

2

)

. (1.30)

For x =
1

21/n
it is f(xn) = f

((
1

21/n

)n)

= f

(
1

2

)

= n.f(x) = n.f

(
1

21/n

)

,

from which we have

f

(
1

21/n

)

=
1

n
.f

(
1

2

)

(1.31)

Finally, for x =
1

21/n
it holds

f(xm) = f

(
1

2m/n

)

= m.f(x) = m.f

(
1

21/n

)

=
m

n
.f

(
1

2

)

,

and hence

f

(
1

2m/n

)

=
m

n
.f

(
1

2

)

(1.32)

Since (1.32) holds for all positive integers m, n and since the function f is
continuous it holds

f

(
1

2x

)

= x.f

(
1

2

)

for all real numbers x ∈ 〈0,∞).

Let us create an auxiliary function g: g(x) = f(x) + f

(
1

2

)

. log2(x).

Then it holds:

g(x) = f(x) + f

(
1

2

)

. log2(x) = f
(

2log2(x)
)

+ f

(
1

2

)

. log2(x) =

= f

(
1

2− log2(x)

)

+ f

(
1

2

)

. log2(x) =

20 CHAPTER 1. INFORMATION

= − log2(x).f

(
1

2

)

+ f

(
1

2

)

. log2(x) = 0

Function g(x) = f(x) + f

(
1

2

)

. log2(x) is identically 0, and that is why

f(x) = −f

(
1

2

)

. log2(x) = −k. log2(x) (1.33)

Using the function f from the last formula (1.33) in the place of f in I(A) =
f(P (A)) we get the famous Shannon – Hartley formula:

I(A) = −k. log2(P (A)) (1.34)

The coefficient k depends on the chosen unit of information similarly as in
the case of elementary way of introducing information.

Let Ω = {0, 1} be the set of possible values of binary digit, A1 = {0}, A2 =
{1}, let the probability of both sets is the same P (A1) = P (A2) = 1/2. From
the Shannon – Hartley formula it follows that both sets carry the same amount
of information – we would like that this amount is the unit of information. That
is why it has to hold:

1 = f

(
1

2

)

= −k. log2

(
1

2

)

= k,

and hence k = 1. We can see that this second way leads to the same result as
the elementary way of introducing information.

Most of textbooks on the information theory start with displaying the
Shannon-Hartley formula from which many properties of information are de-
rived. The reader may ask the question why the amount of information is
defined just by this formula and whether it is possible to measure information
using another expression. We have shown that several ways of introducing in-
formation leads to the same unique result and that there is no other way how
to do it.

Chapter 2

Entropy

2.1 Experiments

If we receive the message ”Event A occurred.”, we get with it − log2 P (A)
bits of information, where P (A) is the probability of the event A. Let (Ω,A, P)
be a probability space. Imagine that the sample space Ω is partitioned to a finite
number n of disjoint events A1, A2, . . . , An. Perform the following experiment:
Choose at random ω ∈ Ω and determine Ai such that ω ∈ Ai, i. e., determine
which event Ai occurred.

We have an uncertainty about its result before executing the experiment.
After executing the experiment the result is known and our uncertainty disap-
pears. Hence we can say that the amount of uncertainty before the experiment
equals to the amount of information delivered by execution of the experiment.

We can organize the experiment in several cases – we can determine the
events of the partition of the sample space Ω. We can do it in order to maximize
the information obtained after the execution of the experiment.

We choose to partition the set Ω into such events that every one corresponds
to one result of the experiment, according to possible outcomes of available mea-
suring technique. A properly organized experiment is one of crucial prerequisites
of success in many branches of human activities.

Definition 2.1. Let (Ω,A, P) be a probability space. Finite measurable
partition of the sample space Ω is a finite set of events {A1, A2, . . . , An}
such that Ai ∈ A for i = 1, 2, . . . , n,

⋃n
i=1 Ai = Ω a Ai ∩Aj = ∅ for i 6= j.

22 CHAPTER 2. ENTROPY

The finite measurable partition P = {A1, A2, . . . , An} of the sample space Ω is
also called experiment.

Some literature requires weaker assumptions on the sets {A1, A2, . . . , An} of
experiment P, namely P (

⋃n
i=1 Ai) = 1 and P (Ai ∩Aj) = 0 for i 6= j. Both the

approaches are the same and their results are equivalent.

Every experiment should be designed in such a way that its execution gives
as much information as possible. If we want to know the departure time of
IC train Tatran, we can get more information from the answer to the question
”What is the hour and the minute of departure of IC train Tatran from Žilina
to Bratislava?” than from the answer to the question ”Does IC train Tatran
depart from Žilina to Bratislava before noon or after noon?”. The first question
partitions the space Ω into 1440 possible events, the second to only 2 events.

Both questions define two experiments P1, P2. Suppose that all events
of the experiment P1 have the same probability equal to 1/1440 and both
events of the experiment P2 have probability 1/2. Every event of P1 carries
with it − log2(1/1440) = 10.49 bits of information, both events of P2 carry
− log2(1/2) = 1 bit of information.

Regardless of the result of the experiment P1 performing this experiment
gives 10.49 bits of information while experiment P2 gives 1 bit of information.

We will consider the amount of information obtained by executing an expe-
riment to be a measure of its uncertainty also called entropy of the experiment.

2.2 Shannon’s definition of entropy

In this stage we know how to define the uncertainty – entropy H(P) of an
experiment P = {A1, A2, . . . , An} if all its events Ai have the same probability
1/n – in this case:

H(P) = − log2(1/n).

But what to do in the case when events of the experiment have different
probabilities? Imagine that Ω = A1 ∪ A2, A1 ∩ A2 = ∅, P (A1) = 0.1,
P (A2) = 0.9.

If A1 is the result we get I(A1) = − log2(0.1) = 3.32 bits of information, but
if the outcome is A2 we get only I(A2) = − log2(0.9) = 0.15 bits of information.
Thus the obtained information depends on the result of the experiment. In the
case of A1 the obtained amount of information is large but it happens only in
10% of trials – in 90% of trials the outcome is A2 and the gained information is
small.

2.2. SHANNON’S DEFINITION OF ENTROPY 23

Imagine now that we execute the experiment many times – e. g., 100 times.
Approximately in 10 trials we get 3.32 bits of information, and approximately
in 90 trials we get 0.15 bits of information. The total amount of information
can be calculated as

10× 3.32 + 90× 0.15 = 33.2 + 13.5 = 46.7

bits.
The average information (per one execution of the experiment) is 46.7/100 =

0.467 bits. One possibility how to define the entropy of experiment in general
case (case of different probabilities of events of the experiment) is to define it
as the mean value of information.

Definition 2.2. Shannon’s definition of entropy. Let (Ω,A, P) be a
probability space. Let P = {A1, A2, . . . , An} be an experiment. The entropy
H(P) of the experiment P is the mean of discrete random variable X whose
value is I(Ai) for all ω ∈ Ai,

1 i. e.:

H(P) =

n∑

i=1

I(Ai)P (Ai) = −
n∑

i=1

P (Ai). log2 P (Ai) (2.1)

A rigorous reader could now ask what will happen if there is an event Ai

in the experiment P = {A1, A2, . . . , An} with P (Ai) = 0. Then the expression
−P (Ai). log2 P (Ai) is of the type 0 log2 0 – and such an expression is not defined.
Nevertheless it holds:

lim
x→0+

x log2(x) = 0,

and thus it is natural to define the function η(x) as follows:

η(x) =

{

−x. log2(x) if x > 0

0 if x = 0.

Then the Shannon entropy formula should be in the form:

H(P) =
n∑

i=1

η(P (Ai)).

1The random variable X could be defined exactly

X(ω) = −
n

X

i=1

χAi
(ω). log2 P (Ai),

where χAi
(ω) is the set indicator of Ai, i. e., χAi

(ω) = 1 if and only if ω ∈ Ai, otherwise
χAi

(ω) = 0.

24 CHAPTER 2. ENTROPY

However, the last notation slightly conceals the form of nonzero terms of formula
and that is why we will use the form (2.1) with the following convention:

Agreement 2.1. From now on, we will suppose that the expression 0. log2(0)
is defined and that

0. log2(0) = 0.

The terms of the type 0. log2(0) in the formula (2.1) express the fact that
adding a set with zero probability to an experiment P results in a new experi-
ment P′ which entropy is the same as that of P.

2.3 Axiomatic definition of entropy

The procedure of introducing the Shannon’s formula in preceding section was
simple and concrete. However, not all authors were satisfied with it. Some
authors would like to introduce the entropy without the notion of information
I(A) of individual event A. This section will follow the procedure of introducing
the notion of entropy without making use of that of information.

Let P = {A1, A2, . . . , An} be an experiment, let p1 = P (A1), p2 = P (A2),
. . . , pn = P (An), let H be a (in this stage unknown) function expressing
the uncertainty of P. Suppose that the function H does not depend on any
particular type of the probability space (Ω,A, P), but it depends only on
numbers p1, p2, . . . , pn:

H(P) = H(p1, p2, . . . , pn).

Function H(p1, p2, . . . , pn) should have several natural properties arising from
its purpose. It is possible to formulate these properties as axioms from which
it is possible to derive another properties and even the particular form of the
function H .

There are several axiomatic systems for this purpose, we will work with that
of Fadejev from year 1956:

AF0: Function y = H(p1, p2, . . . , pn) is defined for all n and for all
p1 ≥ 0, p2 ≥ 0, . . . , pn ≥ 0 such that

∑n
i=1 pi = 1 and takes real values.

AF1: y = H(p, 1− p) is a function of one variable continuous on p ∈ 〈0, 1〉.

AF2: y = H(p1, p2, . . . , pn) is a symmetric function, i. e., it holds:

H(pπ[1], pπ[2], . . . , pπ[n]) = H(p1, p2, . . . , pn). (2.2)

for an arbitrary permutation π of numbers 1, 2, . . . , n.

2.3. AXIOMATIC DEFINITION OF ENTROPY 25

AF3: Branching principle.
If pn = q1 + q2 > 0, q1 ≥ 0, q2 ≥ 0, then

H(p1, p2, . . . , pn−1, q1, q2
︸ ︷︷ ︸

pn

) =

= H(p1, p2, . . . , pn−1, pn) + pn.H

(
q1
pn
,
q2
pn

)

(2.3)

We extend the list of these axioms with so called Shannon’s axiom. Denote:

F (n) = H

1

n
,
1

n
, . . . ,

1

n
︸ ︷︷ ︸

n–times

(2.4)

The Shannon’s axiom says:

AS4: If m < n, then F (m) < F (n).

The axiom AF0 is natural – we want the entropy to exist and to be a
real number for all possible experiments. The axiom AF1 expresses a natural
requirement that small changes of probabilities of an experiment with two
outcomes result in small changes of the uncertainty of this experiment. The
axiom AF2 says that the uncertainty of an experiment does not depend on the
order of its events.

The axiom AF3 needs more detailed explanation. Suppose that the ex-
periment P = {A1, A2, . . . , An−1, An} with probabilities p1, p2, . . . , pn is given.
We define a new experiment P′ = {A1, A2, . . . , An−1, B1, B2} in such a way
that we divide the last event An of P into two disjoint parts B1, B2. Then
it holds P (B1) + P (B2) = P (An) for the corresponding probabilities. Denote
P (B1) = q1, P (B2) = q2, then pn = q1 + q2.

Let us try to express the increment of uncertainty of the experiment P′

compared to uncertainty of P. If the event An occurs then the question about
the result of experiment P is fully answered but we have some additional
uncertainty about the result of experiment P′ – namely which of events B1,
B2 occurred.

Conditional probabilities of events B1, B2 given An are P (B1∩An)/P (An) =
P (B1)/P (An) = q1/pn, P (B2 ∩ An)/P (An) = P (B2)/P (An) = q2/pn, Hence if
the outcome is the event An the remaining uncertainty is

H

(
q1
pn
,
q2
pn

)

.

26 CHAPTER 2. ENTROPY

Nevertheless, the event An does not occur always but only with probability pn.
That is why the division of the eventAn into two disjoint events B1, B2 increases
the total uncertainty of P′ compared to the uncertainty of P by the amount:

pn.H

(
q1
pn
,
q2
pn

)

.

Fadejev’s axioms AF0 – AF3 are sufficient for deriving all properties and the
form of the function H . The validity of Shannon’s axiom can also be proved
from AF0 – AF3.

The corresponding proofs using only AF0 – AF3 are slightly complicated
and that is why we will use the natural Shannon’s axiom. This says that if P1,
P2 are two experiments, the first having m events all with probability 1/m, the
second n events all with probability 1/n and m < n then the uncertainty of P1

is less then that of P2

Theorem 2.1. Shannon’s entropy

H(P) =

n∑

i=1

I(Ai)P (Ai) = −
n∑

i=1

P (Ai) log2 P (Ai)

fulfils the axioms AF0 till AF3 and Shannon’s axiom AS4.

Proof. Verification of all axioms is simple and straightforward and the reader
can do it easily himself. �

Now we will prove several affirmations arising from axioms AF0 – AF3
and AS4. These affirmations will show us several interesting properties of the
function H provided this function fulfills all mentioned axioms. The following
theorems will lead step by step to Shannon’s entropy formula. Since Shannon’s
entropy (2.1) fulfills all axioms by theorem 2.1, these theorems hold also for it.

Theorem 2.2. Function y = H(p1, p2, . . . , pn) is continuous on the set

Qn =

{

(x1, x2, . . . , xn) | xi ≥ 0 for i = 1, 2 . . . , n,

n∑

i=1

xi = 1

}

.

Proof. Mathematical induction on m. The statement for m = 2 is equivalent
with axiom AF1. Let the function y = H(x1, x2, . . . xm) be continuous on Qm.
Let (p1, p2, . . . , pm, pm+1) ∈ Qm+1. Suppose that at least one of the numbers
pm, pm+1 is different from zero (otherwise we change the order of numbers pi).
Using axiom AF3 we have:

2.3. AXIOMATIC DEFINITION OF ENTROPY 27

H(p1, p2, . . . , pm, pm+1
︸ ︷︷ ︸

) = H
(
p1, p2, . . . , pm−1, (pm + pm+1)

)
+

+ (pm + pm+1).H

(
pm

(pm + pm+1)
,

pm+1

(pm + pm+1)

)

(2.5)

The continuity of the first term of (2.5) follows from the induction hypothesis,
the continuity of the second term follows from axiom A1. �

Theorem 2.3. H(1, 0) = 0.

Proof. Using axiom AF3 we can write:

H

(

1

2
,
1

2
, 0

︸︷︷︸

)

= H

(
1

2
,
1

2

)

+
1

2
.H(1, 0) (2.6)

Applying first axiom AF2 and then axiom AF3:

H

(
1

2
,
1

2
, 0

)

= H

(

0,
1

2
,
1

2
︸︷︷︸

)

=

= H(0, 1) +H

(
1

2
,
1

2

)

= H

(
1

2
,
1

2

)

+H(1, 0) (2.7)

Comparing left hand sides of (2.6), (2.7) we get
1

2
.H(1, 0) = H(1, 0) what implies

H(1, 0) = 0. �

Let P = {A1, A2} be the experiment consisting from two events one of which
is certain and the other impossible. Theorem (2.3) says, that such experiment
has zero uncertainty.

Theorem 2.4. H(p1, p2, . . . , pn, 0) = H(p1, p2, . . . , pn)

Proof. At least one of numbers p1, p2, . . . , pn is positive. Let pn > 0 (otherwise
we change the order). Then using axiom AF3:

H(p1, p2, . . . , pn, 0
︸︷︷︸

) = H(p1, p2, . . . , pn) + pn. H(1, 0)
︸ ︷︷ ︸

0

(2.8)

�

Again one good property of entropy – it does not depend on events with zero
probability.

28 CHAPTER 2. ENTROPY

Theorem 2.5. Let pn = q1 + q2 + · · ·+ qm > 0. Then

H(p1, p2, . . . , pn−1, q1, q2, . . . , qm
︸ ︷︷ ︸

pn

) =

= H(p1, p2, . . . , pn) + pn.H

(
q1
pn
,
q2
pn
, . . . ,

qm
pn

)

(2.9)

Proof. Mathematical induction on m. The statement for m = 2 is equivalent
to the axiom AF3.
Let the statement hold for m ≥ 2.
Set p′ = q2 + q3 + · · ·+ qm+1, suppose that p′ > 0 (otherwise change the order
of q1, q2, . . . , qm+1). By the induction hypothesis

H(p1, p2, . . . , pn−1, q1, q2, . . . , qm+1
︸ ︷︷ ︸

p′=
P

m
k=2 qk

) =

= H(p1, p2, . . . , pn−1, q1, p
′

︸ ︷︷ ︸

pn

) + p′.H

(
q2
p′
, . . . ,

qm+1

p′

)

=

= H(p1, p2, . . . , pn) + pn.

[

H

(
q1
pn
,
p′

pn

)

+
p′

pn
H

(
q2
p′
, . . . ,

qm+1

p′

)]

. (2.10)

Again by induction hypothesis:

H

(

q1
pn
,
q2
pn
, . . . ,

qm+1

pn
︸ ︷︷ ︸

p′

pn

)

= H

(
q1
pn
,
p′

pn

)

+
p′

pn
H

(
q2
p′
, . . . ,

qm+1

p′

)

. (2.11)

We can see that the right hand side of (2.11) is the same as the contents of
big square brackets on the right hand side of (2.10). Replacing the contents of
big square brackets of (2.10) by the left hand side of (2.11) gives (2.9). �

Theorem 2.6. Let qij ≥ 0 for all pairs of integers (i, j) such that i = 1, 2, . . . , n
and j = 1, 2, . . . ,mi, let

∑n
i=1

∑mi

j=1 = 1.
Let pi = qi1 + qi2 + · · ·+ qimi > 0 for i = 1, 2, . . . , n. Then

H(q11, q12 . . . q1m1 , q21, q22, . . . , q2m2 , . . . , qn1, qn2, . . . , qnmn) =

= H(p1, p2, . . . , pn) +

n∑

i=1

pi.H

(
qi1
pi
,
qi2
pi
, . . . ,

qimi

pi

)

(2.12)

2.3. AXIOMATIC DEFINITION OF ENTROPY 29

Proof. The proof can be done by repeated application of theorem 2.5. �

Theorem 2.7. Denote F (n) = H

(
1

n
,
1

n
, . . . ,

1

n

)

. Then F (mn) = F (m) +

F (n).

Proof. From theorem 2.6 it follows:

F (mn) = H

(

1

mn
, . . . ,

1

mn
︸ ︷︷ ︸

m-times

, . . .
1

mn
, . . . ,

1

mn
︸ ︷︷ ︸

m-times
︸ ︷︷ ︸

n-times

)

=

= H

(
1

n
,
1

n
, . . . ,

1

n

)

+
n∑

i−1

1

n
H

(
1

m
,

1

m
, . . . ,

1

m

)

=

= H

(
1

n
,
1

n
, . . . ,

1

n

)

+H

(
1

m
,

1

m
, . . . ,

1

m

)

= F (n) + F (m)

�

Theorem 2.8. Let F (n) = H

(
1

n
,
1

n
, . . . ,

1

n

)

. Then F (n) = c. log2(n).

Proof. We show by mathematical induction that it holds F (nk) = k.F (n) for
k = 1, 2, By theorem 2.7 it holds: F (m.n) = F (m) + F (n). Especially
for m = n is F (n2) = 2.F (n), F (nk) = F (nk−1.n) = F (nk−1).F (n) =
(k − 1).F (n) + F (n) = k.F (n). Therefore we can write:

F (nk) = k.F (n) for k = 1, 2, . . . (2.13)

Formula (2.13) has several consequences:

1. F (1) = F (12) = 2.F (1) What implies F (1) = 0, and hence
F (1) = c. log2(1) for every real c.

2. Since the function F is strictly increasing by axiom AS4, it holds for every
integer m > 1 F (m) > F (1) = 0.

Let us have two integers m > 1, n > 1 and an arbitrary large integer K > 0.
Then there exists an integer k > 0 such that

mk ≤ nK < mk+1. (2.14)

30 CHAPTER 2. ENTROPY

Since F is an increasing function

F (mk) ≤ F (nK) < F (mk+1).

Applying (2.13) gives:

k.F (m) ≤ K.F (n) < (k + 1).F (m).

Divide the last inequality by K.F (m) (F (m) > 0, therefore this division is
allowed and it does not change inequalities):

k

K
≤

F (n)

F (m)
<
k + 1

K
. (2.15)

Since (2.14) holds we can get by the same reasoning:

log2(m
k) ≤ log2(n

K) < log2(m
k+1)

k. log2(m) ≤ K. log2(n) < (k + 1). log2(m),

and hence (remember that m > 1 and therefore log2(m) > 0)

k

K
≤

log2(n)

log2(m)
<
k + 1

K
. (2.16)

Comparing (2.15) and (2.16) we can see that both fractions
F (n)

F (m)
,

log2(n)

log2(m)
are

elements of interval

〈
k

K
,
k + 1

K

)

whose length is
1

K
and then

∣
∣
∣
∣

F (n)

F (m)
−

log2(n)

log2(m)

∣
∣
∣
∣
<

1

K
. (2.17)

The left hand size of (2.17) does not depend on K. Since the whole procedure
can be repeated for arbitrary large integer K, the formula (2.17) holds for
arbitrary K from which it follows:

F (n)

F (m)
=

log2(n)

log2(m)
,

and hence

F (n) = F (m).
log2(n)

log2(m)
=

(
F (m)

log2(m)

)

log2(n). (2.18)

Fixate m and set c =
F (m)

log2(m)
in (2.18). We get F (n) = c. log2(n). �

2.3. AXIOMATIC DEFINITION OF ENTROPY 31

Theorem 2.9. Let p1 ≥ 0, p2 ≥ 0, . . . , pn ≥ 0,
∑n

i=1 pi = 1. Then there exists
a real number c > 0 such that

H(p1, p2, . . . , pn) = −c.
n∑

i=1

pi. log2(pi). (2.19)

Proof. We will prove (2.19) first for rational numbers p1, p2, . . . , pn – i. e.,
when every pi is a ratio of two integers. Let s be the common denominator of

all fractions p1, p2, . . . , pn, let pi =
qi
s

for i = 1, 2, . . . , n. We can write by (2.12)

of theorem 2.6:

H

(

1

s
, . . . ,

1

s
,

︸ ︷︷ ︸

q1-times

1

s
, . . . ,

1

s
,

︸ ︷︷ ︸

q2-times

. . .
1

s
, . . . ,

1

s
,

︸ ︷︷ ︸

qn-times

)

=

= H(p1, p2, . . . , pn) +

n∑

i=1

pi.H

(
1

qi
,

1

qi
. . . ,

1

qi

)

=

= H(p1, p2, . . . , pn) +
n∑

i=1

pi.F (qi) =

= H(p1, p2, . . . , pn) + c.

n∑

i=1

pi. log2(qi). (2.20)

The left hand side of (2.20) equals F (s) = c. log2(s), therefore we can write:

H(p1, p2, . . . , pn) = c log2(s)− c.
n∑

i=1

pi log2(qi) =

= c log2(s)
n∑

i=1

pi − c
n∑

i=1

pi log2(qi) = c
n∑

i=1

pi log2(s)− c
n∑

i=1

pi log2(qi) =

= −c
n∑

i=1

pi[log2(qi)− log2(s)] =

= −c
n∑

i=1

pi log2

(qi
s

)

= −c
n∑

i=1

pi log2(pi). (2.21)

The function H is continuous and (2.21) holds for all rational numbers p1 ≥ 0,
p2 ≥ 0,. . . , pn ≥ 0 such that

∑n
i=1 pi = 1, therefore (2.21) has to hold for all

rational arguments pi fulfilling the same conditions. �

32 CHAPTER 2. ENTROPY

It remains to determine the constant c. In order to comply with the
requirement that the entropy of an experiment with two events with equal
probabilities equals 1, it has to hold H(1/2, 1/2) = 1 what implies:

1 = H

(
1

2
,
1

2

)

= −c.

[
1

2
. log2

(
1

2

)

+
1

2
. log2

(
1

2

)]

= −c.

(

−
1

2
−

1

2

)

= c

We can see that axiomatic definition of entropy leads to the same Shannon
entropic formula that we have obtained as the mean value of discrete random
variable of information.

2.4 Another properties of entropy

Theorem 2.10. Let pi > 0, qi > 0,
∑n

i=1 pi = 1,
∑n

i=1 qi = 1 for i =
1, 2, . . . , n. Then

−
n∑

i=1

pi log2(pi) ≤ −
n∑

i=1

pi log2(qi), (2.22)

with equality if and only if pi = qi for all i = 1, 2, . . . , n.

Proof. First we prove the following inequality:

ln(1 + y) ≤ y for y > −1

Set g(y) = ln(1+y)−y and search for extremes of g. It holds g′(y) =
1

1 + y
−1,

g′′(y) = −
1

(1 + y)2
≤ 0. The equation g′(y) = 0 has unique solution y = 0 and

g′′(0) = −1 < 0. Function g(y) takes its global maximum in the point y = 0.
That is why g(y) ≤ 0, i. e., ln(1 + y) − y ≤ 0 and hence ln(1 + y) ≤ y with
equality if and only if y = 0. Substituting y by x− 1 in (2.22) we get

ln(x) ≤ x− 1 for x > 0, (2.23)

with equality if and only if x = 1.

Now we use substitution x =
qi
pi

in (2.23). We get step by step:

ln(qi)− ln(pi) ≤
qi
pi
− 1

pi ln(qi)− pi ln(pi) ≤ qi − pi

2.4. ANOTHER PROPERTIES OF ENTROPY 33

−pi ln(pi) ≤ −pi ln(qi) + qi − pi

−
n∑

i=1

pi ln(pi) ≤ −
n∑

i=1

pi ln(qi) +
n∑

i=1

qi

︸ ︷︷ ︸

=1

−
n∑

i=1

pi

︸ ︷︷ ︸

=1

−
n∑

i=1

pi
ln(pi)

ln(2)
≤ −

n∑

i=1

pi
ln(qi)

ln(2)

−
n∑

i=1

pi log2(pi) ≤ −
n∑

i=1

pi log2(qi),

with equalities in the first three rows if and only if pi = qi and with equalities
in the last three rows if and only if pi = qi for all i = 1, 2, . . . , n. �

Theorem 2.11. Let n > 1 be a fixed integer. The function

H(p1, p2, . . . , pn) = −
n∑

i=1

pi log2(pi)

takes its maximum for p1 = p2 = · · · = pn = 1/n.

Proof. Let p1, p2, . . . , pn be real numbers pi ≥ 0 for i = 1, 2, . . . , n,
∑n

i=1 pi = 1

and set q1 = q2 = · · · = qn =
1

n
into (2.22). Then

H(p1, p2, . . . , pn) = −
n∑

i=1

pi log2(pi) ≤ −
n∑

i=1

pi log2

(
1

n

)

=

= − log2

(
1

n

)

.

n∑

i=1

pi = − log2(
1

n
) = log2 n = H

(
1

n
,
1

n
, . . . ,

1

n

)

�

34 CHAPTER 2. ENTROPY

2.5 Application of entropy

in selected problem solving

Let (Ω,A, P) be a probability space. Suppose that an elementary event ω ∈ Ω
occurred. We have no possibility (and no need for it, too) to determine
the exact elementary event ω, it is enough to determine the event Bi of the
experiment B = {B1, B2, . . . , Bn} for which ω ∈ Bi.

2 The experiment
B = {B1, B2, . . . , Bn} on the probability space (Ω,A, P) answering the required
question is called basic experiment

There are often problems of the type: ”Determine, using as little questions as
possible, which of the events of the given basic experiment B occurred.” Unless
not specified, we expect that all events of the basic experiment have equal
probabilities. Then the entropy of such experiment with n events equals to
log2(n) – i. e., execution of such experiment gives us log2(n) bits of information.

Very often we are not able to organize the basic experiment B because the
number of available answers to our question is limited (e. g., given by available
measuring equipment). An example of limited number of possible answers is the
situation when we can get only two answers ”yes” or ”no”. If we want to get
maximum information with one answer, we have to formulate the corresponding
question in such a way that the probability of both answers is as close as possible
to number 1/2.

Example 2.1. There are 32 pupils in a class, one of them won a literature con-
test. How to determine the winner using as little as possible questions with only
possible answers ”yes” or ”no”? In the case of non-limited number of answers
this problem could be solved by the basic experiment B = {B1, B2, . . . , B32}
with 32 possible outcomes and the gained information would be log2(32) = 5
bits.

Since only answers ”yes” or ”no” are allowed we have to replace the experi-
ment B by series of experiments of the type A = {A1, A2} with only two events.
Such experiment can give at most 1 bit of information so that at least 5 such
experiments are needed to specify the winner.

If we deal with an average Slovak co-educated class we can ask a question:
”Is the winner a boy?” This is a good question since in Slovak class the number of
boys is approximately equal to the number of girls. The answer to this question
gives approximately 1 bit of information.

2For the sake of proper ski waxing it suffices to know in which of temperature intervals
(−∞,−12), (−12,−8), (−8,−4), (−4, 0) and (0,∞) the real temperature is since we have ski
waxes designed for mentioned temperature intervals.

2.5. ENTROPY IN PROBLEM SOLVING 35

The question ”Is John Black the winner?” gives in averageH(1/32, 31/32) =
−(1/32). log2(1/32) − (31/32). log2(31/32) = 0.20062 bits of information. It
can happen that the answer is ”yes” and in this case we would get 5 bits of
information. However, this happens only in 1 case of 32, in other cases, we get
the answer ”no” and we get only 0.0458 bits of information.

That is why it is convenient that every question divides till now not excluded
pupils into two equal subsets.
Here is the procedure how to determine the winner after 5 questions: Assign
the pupils integer numbers from 1 to 32.

1. Question: ”Is the winner assigned a number from 1 to 16?” If the answer
is ”yes”, we know that the winner is in the group with numbers from 1 to
16, if the answer is ”no” the winner is in the group with numbers from 17
to 32.

2. Question ”Is the number of winner among 8 lowest in the group with 16-
pupils containing the winner?” Thus the group with 8 elements containing
the winner is determined.

3. Similar question about the group with 8 elements determines the group
with 4 members.

4. Similar question about the group with 4 elements determines the group
with 2 members.

5. Question if the winner is one of two determines the winner.

The last example is slightly artificial one. A person which is willing to answer
five questions of the type yes” or ”no” will probably agree to give the direct
answer to the question ”Who won the literature contest?”.

Example 2.2. Suppose we have 22 electric bulbs connected into one series
circuit. If one of the bulbs blew out, the other bulbs would not be able to shine
because electric current would have been interrupted. We have an ohmmeter
at our disposal and we can measure the resistance between two arbitrary points
of the circuit. What is the minimum number of measurements for determining
the blown bulb?

The basic experiment has the entropy log2(22) = 4.46 bits. A single
measurement by ohmmeter says us whether there is or not a disruption between
measured points of the circuit so such measuring gives us 1 bit of information.
Therefore we need at least 5 measurements for determining the blown bulb.

36 CHAPTER 2. ENTROPY

Assign numbers 1 to 22 to bulbs in the order in which they are connected in
the circuit.

First connect the ohmmeter before the first bulb and behind the eleventh
one. If the measured resistance is infinite, the blown bulb is among bulb 1 to
11 otherwise the blow bulb is among bulbs 12 to 22.

Now partition the disrupted segment into two subsegments with (if possible)
equal number of bulbs and determine by measuring the bad segment etc. After
the first measurement there are 11 suspicious bulbs, after the second measure-
ment the set with blown bulb contains 4 or 5 bulbs, the third measurement
determines 2 or 3 bulbs, the forth measurement determines the single blown
bulb or 2 bad bulbs and finally the fifth measurement (if needed) determines
the blown bulb.

Example 2.3. Suppose you have 27 coins. One of the coins is forged. You only
know that the forged coin is slightly lighter than the other 26 ones. We have a
balance scale as a measuring device. Your task is to determine the forged coin
using as little weighing as possible. The basic experiment has 27 outcomes and
its entropy is log2(27) = 4.755 bits.

If we place different number of coins on both sides of the balance surely, the
side with greater number of coins will be heavier and such experiment gives us
no information.

Place any number of coins on the left side of the balance and the same
number of coins on the right side of the balance. Denote by L, R, A the sets of
coins on the left side of the balance, on the right side of the balance, and aside
the balance. There are three outcomes of such weighing.

• The left side of the balance is lighter. The forged coin is in the set L.

• The right side of the balance is lighter. The forged coin is in the set R.

• Both sides of the balance are equal. The forged coin is in the set A.

The execution of experiment where all coins are partitioned into three subsets
L, R and A (where |L| = |R|) gives us the answer to the question which of
them contains the forged coin. In order to obtain maximum information from
this experiment the sets L, R and A should have equal (or as equal as possible)
probabilities. In our case of 27 coins we can easy achieve this since 27 is divisible
by 3. In such a case it is possible to get log2(3) = 1.585 bits of information from
one weighing.

2.5. ENTROPY IN PROBLEM SOLVING 37

Since log2(27)/ log2(3) = log2(3
3)/ log2(3) = 3 log2(3)/ log2(3) = 3, at least

three weighing will be necessary for determining the forged coin. The actual
problem solving follows:

1. weighing: Partition 27 coins into subsets L, R, A with |L| = |R| = |A| = 9
(all subsets contain 9 coins). Determine (and denote by F) the subset
containing the forged coin.

2. weighing: Partition 9 coins of the set F into subsets L1, R1, A1 with
|L1| = |R1| = |A1| = 3 (all subsets contain 3 coins). Determine (and
denote by F1) the subset containing the forged coin.

3. weighing: Partition 3 coins of the set F1 into subsets L2, R2, A2 with
|L1| = |R1| = |A1| = 1 (all subsets contain only 1 coin). Determine the
forged coin.

In general case where n is not divisible by 3 then n = 3m+1 = m+m+(m+1)
– in this case |L| = |R| = m and |A| = m+1, or n = 3m+2 = (m+1)+(m+1)+m
– in this case |L| = |R| = m+ 1 and |A| = m.

Example 2.4. Suppose we have 27 coins. One of the coins is forged. We only
know that the forged coin is slightly lighter, or slightly heavier than the other
26 ones.

We are to determine the forged coin and to find out whether it is heavier
or lighter. The basic experiment has now 2 × 27 = 54 possible outcomes –
every one from 27 coins can be forged whereas it can be lighter or heavier
than the genuine one. The basic experiment has 2× 27 = 54 outcomes and its
entropy is log2(54) = 5.755 bits. The entropy of one weighing is less or equal
to log2(3) = 1.585 bits from what it follows that three weighings cannot do for
determining the forged coin.

One possible solution of this problem: Partition 27 coins into subsets L, R,
A with |L| = |R| = |A| = 9 (all subsets contain 9 coins). Denote by w(X) the
weight of the subset X .

a) If w(L) = w(R) we know that the forged coin is in the set A. The
second weighing says us that w(L) < w(A) – the forged coin is heavier, or
w(L) > w(A) – the forged coin is lighter. The third weighing determines
which triplet – subset of A contains the forged coin. Finally, by the fourth
weighing we determine the single forged coin.

38 CHAPTER 2. ENTROPY

b) If w(L) < w(R) we know that A contains only genuine coins. The
second weighing says that w(L) < w(A) – the forged coin is lighter and is
contained in the set L, or w(L) > w(A) – the forged coin is heavier and is
contained in the set L, or w(L) = w(A) – the forged coin is heavier and is
contained in the set R. The third weighing determines the triplet of coins
with the forged coin and the forth weighing determines the single forged
coin.

c) If w(L) > w(R) the procedure is analogous as in the case b).

Example 2.5. We are given n large bins containing iron balls. All balls in one
bin have the same known weight w gram. n− 1 bins contain identical balls but
one bin contains balls 1 gram heavier. Our task is to determine the bin with
heavier balls. All balls are apparently the same and hence the heavier ball can
be identified only by weighing.

We have at hand a precision electronic commercial scale which can weigh
arbitrary number of balls with an accuracy better than 1 gram. How many
weighings is necessary for determining the bin with heavier balls? The basic
experiment has n possible outcomes – its entropy is log2(n) bits.

We try to design our measurement in order to obtain as much information
as possible. We put on the scale 1 ball from the first bin, 2 balls from the second
bin, etc. n balls from the n-th bin. The total number of all balls on the scale
is 1 + 2 + · · · + n = 1

2n(n + 1) and the total weight of all balls on the scale is
1
2n(n+1)w+k where k is the serial number of the bin with heavier balls. Hence
it is possible to identify the bin with heavier balls using only one weighing.

Example 2.6. Telephone line from the place P to the place Q is 100 m long.
The line was disrupted somewhere between P and Q. We can measure the line
in such a way that we attach a measuring device to an arbitrary point X of the
segment PQ and the device says us whether the disruption is between points P
and X or not. We are to design a procedure which identifies the segment of the
telephone line not longer than 1 m containing the disruption.

Denote by Y the distance of the point of disruption X from the point
P . Then Y is a continuous random variable, Y ∈ 〈0, 100〉 with an uniform
distribution on this interval. We have not defined the entropy of an experiment
with infinite number of events, but fortunately our problem is not to determine
the exact value of Y , but only the interval of the length 1 m containing X . The
basic experiment is

B =
{
〈0, 1), 〈1, 2), . . . , 〈98, 99), 〈99, 100〉

}

2.5. ENTROPY IN PROBLEM SOLVING 39

with the entropy H(B) = log2(100) = 6.644 bits.

Having determined the interval 〈a, b〉 containing the disruption, our mea-
surement allows to specify for every c ∈ 〈a, b〉 whether the disruption occurs
in interval 〈a, c) or 〈c, b〉. Provided that the probability of disruption in a seg-
ment 〈a, b〉 is directly proportional to its length, it is necessary to chose the
a c in the middle of segment 〈a, b〉 in order to obtain maximum information
from such measurement – 1 bit. Since the basic experiment B has entropy
6.644 bits we need at least 7 measurements. The procedure of determining the
segment containing the disruption will be as follows: The first measurement
says us whether the defect occurred in the first, or in the second half of tele-
phone line, second measurement specifies the segment 100/22 m long containing
disruption, etc., the sixth measurement gives us the erroneous segment 〈a, b〉
100/26 = 100/64 = 1.5625 m long. This segment contains exactly one integer
point c which will be taken as dividing point for the last measurement.

Till now we were studying such organizations of experiments which allow us
to certainly determine which event of the basic experiment occurred using
the minimum number of available experiments. If possible we execute the basic
experiment (see iron balls in bins). However, in most cases the difficulty of
such problems rests upon the fact that we are limited only to experiments
of a certain type. The lower bound of the number of available experiments
is directly proportional to the entropy of the basic experiment and indirectly
proportional to the entropy of available experiment.

We have the greatest uncertainty before executing an experiment in the
case that all its events have the same probability – in this case the entropy
of the experiment is H(1/n, 1/n, . . . , 1/n) = log2(n). This is the worst case
of uncertainty and that is why we suppose that all events of basic experiment
have the same probability in cases that these probabilities are not given. This
assumption leads to such a procedure which does not prefer any event of the
basic experiment.

How should be modified our procedure in the case of basic experiment with
different event probabilities? If the goal ”to certainly determine the occurred
event using minimum number of available experiments” remains, then nothing
needs to be changed.

But we could formulate another goal: ”To find such procedure of determin-
ing the occurred event that minimizes the mean number of experiments”. We
abandoned the requirement ”to determine certainly”. We admit the possibil-
ity that in several adverse but not very likely situations the proposed procedure

40 CHAPTER 2. ENTROPY

will require many executions of available experiments. But our objective is to
minimize the mean number of questions if our procedure is repeated many times.

Example 2.7. On the start line of F1 there were 18 cars. Cars a1 and a2 are
from technologically advanced team and that is why both have the probability
of victory equal to 1/4. Every from remaining 16 cars a3, . . . , a18 wins with
probability 1/32. The basic experiment is

A = {{a1}, {a2}, {a2}, . . . , {a18}},

and its entropy is

H(A) = H

(
1

4
,
1

4
,

1

32
,

1

32
, . . . ,

1

32

)

= 3.5 .

Therefore the mean number of questions with only two possible answers for
determining the winner cannot be less than 3.5. For obtaining maximum
information, it is necessary to formulate the question in such a way that both
answers ”yes” and ”no” have the same probability 1/2.

One of possible ways is to make a decision between the sets A1 = {a1, a2} and
A2 = {a3, a4, . . . , a18} after the first question. In half of cases the winner is in
A1, and only one question suffices for determining the winner. In another half of
cases we get the set A2 with 16 equivalent events and here further 4 questions
are necessary for determining the winner. The mean number of questions is
1
2 .2 + 1

2 .5 = 3.5.
For comparison we present the procedure of the solving an analogical prob-

lem when no probabilities are given. This procedure needs at least 4 and in
several cases 5 questions.

Assign numbers from 1 to 18 to all cars.

1. Is the number of the winner among numbers 1 – 9? The answer determines
the set B1 with 9 elements containing the winner.

2. Is the number of the winner among four least numbers of B1? The result
is the set B2 containing the winner, |B2| = 4 or |B2| = 5.

3. Is the number of the winner among two least numbers of B2? The result
is the set B3 containing the winner, |B3| = 2 or |B2| = 3.

4. Is the number of the winner the least number in B3? If yes, STOP, we
have the winner. Otherwise we have the setB4 with only two elements.

5. We determine the winner by direct question.

2.5. ENTROPY IN PROBLEM SOLVING 41

The notion of entropy is very successfully used by modelling mobility of
passengers in a studied region. Suppose that there are n bus stops in the given
region and we want to determine for every ordered pair (i, j) of bus stops the
number Qij of passengers travelling from the bus stop i to the bus stop j.

The values Qij can be determined by complex traffic measuring but such
research is very expensive. It is much easier to determine for every bus stop i
the number Pi of passengers departing from i and the number Ri of passengers
arriving into i.

Obviously
∑n

i=1 Pi =
∑n

j=1Rj = Q, where Q is the total number of pas-
sengers during investigated period. The following equations hold for unknown
values Qij:

n∑

i=1

Qij = Rj for j = 1, 2, . . . , n (2.24)

n∑

j=1

Qij = Pi for i = 1, 2, . . . , n (2.25)

Qij ≥ 0 for i, j = 1, 2, . . . , n (2.26)

Denote by cij the transport expenses of transportation of one passenger from
the place i to the place j. (These expenses contain fares, but they can include
time loss of passengers, travel discomfort, etc.) One of hypotheses says that the
total transport expenses

C =

n∑

i=1

n∑

j=1

cijQij (2.27)

are minimal in steady state of transportation system.

Provided that this hypothesis is correct, the values Qij can be obtained by
solving the following problem: Minimize (2.27) subject to (2.24), (2.25) and
(2.26), what is nothing else as the notorious transportation problem. Unfortu-
nately, the results of just described model differ considerably from real observa-
tions.

It shows that in the frame of the same societal and economical situation there
is equal measure of freedom of destination selection, which can be expressed by
the entropy

H

(
Q11

Q
, . . .

Q1n

Q
,
Q21

Q
, . . .

Q2n

Q
, ,

Qn1

Q
, . . .

Qnn

Q

)

. (2.28)

42 CHAPTER 2. ENTROPY

The ratio
Qij

Q
in (2.28) expresses the probability that a passenger travels from

the bus stop i to the bus stop j.

Entropic models are based on maximization of (2.28), or on combination
objective functions (2.27) and (2.28), or on extending the constrains by C ≤ C0

or H ≥ H0. Such models correspond better to practical experiences.

2.6 Conditional entropy

Let B = {B1, B2, . . . , Bm} be an experiment on a probability space (Ω,A, P).
Suppose that an elementary event ω ∈ Ω occurred. It suffices for our pur-
poses to know which event of the experiment B occurred, i. e., for which Bj

(j = 1, 2, . . .m) it holds ω ∈ Bj . Because of some limitations we cannot execute
the experiment B (neither we can learn which ω ∈ Ω occurred) but we know
the result Ai of the experiment A = {A1, A2, . . . , An}.

Suppose that the event Ai occurred. Then the probabilities of events
B1, B2, . . . , Bm given Ai has occurred ought to be P (B1|Ai), P (B2|Ai), . . . ,
P (Bm|Ai). Our uncertainty before performing the experiment B was

H(B) = H(P (B1), P (B2), . . . , P (Bm)) .

After receiving the report that the event Ai occurred the uncertainty about the
result of the experiment B changes to

H
(
P (B1|Ai), P (B2|Ai), . . . , P (Bm|Ai)

)
,

which we will denote by H(B|Ai).

Definition 2.3. Let A = {A1, A2, . . . , An}, B = {B1, B2, . . . , Bm} are two
experiments. The conditional entropy of the experiment B given the
event Ai occurred (or shortly only given the event Ai) is

H(B|Ai) = H
(
P (B1|Ai), P (B2|Ai), . . . , P (Bm|Ai)

)
=

= −
m∑

j=1

P (Bj |Ai). log2(P (Bj |Ai)). (2.29)

2.6. CONDITIONAL ENTROPY 43

Example 2.8. Die rolling. Denote B = {B1, B2, . . . , B6} the experiment
in which the event Bi means ”i spots appeared on the top face of die” for
i = 1, 2, . . . 6. The probability of all events Bi is the same – P (Bi) = 1/6.
Our uncertainty about the result of the experiment B is

H(B) = H(1/6, 1/6, . . . , 1/6) = log2(6) = 2.585 bits.

Suppose that we have received the report ”The result is an odd number” after
execution of the experiment B. Denote A1 = B1 ∪B3 ∪B5, A2 = B2 ∪B4 ∪B6.
The event A1 means ”The result is an odd number” the event A2 means
”The result is an even number”. Both events carry the same information
− log2(1/2) = 1 bits.
After receiving the message A1 our uncertainty about the result of the experi-
ment B changes from H(B) to

H(B|A1) =

H
(
P (B1|A1), P (B2|A1), P (B3|A1), P (B4|A1), P (B5|A1), P (B6|A1)

)
=

H(1/3, 0, 1/3, 0, 1/3, 0) = H(1/3, 1/3, 1/3) = log2(3) = 1.585 bits.

The message ”The result is an odd number” – i. e., the event A1 with 1 bit
of information has lowered our uncertainty from H(B) = 2.585 to H(B|A1) =
1.585 – exactly by the amount of its information.

WARNING! This is not a generally valid fact!

The following example shows that in some cases the report ”The event Ai

occured” can even increase the conditional entropy H(B|Ai).

Example 2.9. Michael Schumacher was a phenomenal pilot of Formula One.
He holds seven world championship titles in years 1994, 1995 a 2000–2004.
In 2004 he won 13 races out of 18. Hence his chance to win the race was almost
3/4. The following example was inspired by just mentioned facts.

On the start line there are 17 pilots – Schumacher with probability of victory
3/4 and the rest 16 equal pilots every one of them with chance 1/64.

Denote B = {B1, B2, . . . , B17} the experiment in which the event B1 is the
event ”Schumacher has won” and Bi for i = 2, 3, . . . , 17 means ”Pilot i has
won”. Let P (B1) = 3/4, P (B2) = P (B3) = · · · = P (B17) = 1/64. Entropy of
the experiment B is

H(B) = H (3/4, 1/64, 1/64, . . . , 1/64) = 1.811.

44 CHAPTER 2. ENTROPY

The message B1 ”Schumacher has won” contains − log2 P (B1) = − log2(0.75)
0.415 bits of information while the message ”Pilot 17 has won” carries
− log2(P (B17)) = − log2(1/64) = 6 bits of information.

Let A = {A1, A2} be the experiment where A1 is the event ”Schumacher
has won” (i. e., A1 = B1) and A2 is the event ”Schumacher has not won” (i. e.,
A2 = B2∪B3∪· · ·∪B17. It holds P (A1) = 3/4, P (A2) = 1/4. Suppose that we
get the message that Schumacher has not won – the event A2 occurred. This
message carries with it − log2(P (A2)) = − log2(1/4) = 2 bits of information.
Our uncertainty changes after this message from H(B) = 1.811 to H(B|A2).
Calculate

H(B|A2) = H
(
P (B1|A2), P (B2|A2), . . . , P (B17|A2)

)
=

= H(0, 1/16, 1/16, . . . , 1/16) = H(1/16, 1/16, . . . , 1/16) = 4.

The message ”The event A2 occurred” (i. e., ”Schumacher has not won”)
brought 2 bits of information and in spite of this our uncertainty about the
result of the race has risen from H(B) = 1.811 to H(B|A2) = 4.

If the event A1 is the result of the experiment A, then P (B1|A1) =
P (B1|B1) = 1 and P (Bj |A1) = 0 for j = 2, 3, . . . , 17 and therefore H(B|A1) =
H(1, 0, . . . , 0) = 0. The probability of the result A1 is 3/4. The result A2 of A
occurred with the probability 1/4. The mean value of conditional entropy of B
after executing the experiment A is

P (A1).H(B|A1) + P (A2).H(B|A2) = (3/4).0 + (1/4).4 = 1 bit.

Let us make a short summary of this section. We are interested in the result
of the experiment B with the entropy H(B). Suppose that an elementary event
ω ∈ Ω occurred. We have received the report that ω ∈ Ai and this report
has chained the entropy of the experiment B from H(B) to H(B|Ai). For
every ω ∈ Ω there exists exactly one set Ai ∈ A such that ω ∈ Ai. Hence we
can uniquely assign the number H(B|Ai) to every ω ∈ Ω. This assignment is
a discrete random variable3 on the probability space(Ω,A, P) with mean value
∑n

i=1 P (Ai).H(B|Ai).

3The exact definition of this random variable is:

h(B|A)(ω) =
n

X

i=1

H(B|Ai).χAi
(ω),

where χAi
(ω) is the indicator of the set Ai, i. e., χAi

(ω) = 1 if and only if ω ∈ Ai, otherwise
χAi

(ω) = 0.

2.6. CONDITIONAL ENTROPY 45

Definition 2.4. Let A = {A1, A2, . . . , An}, B = {B1, B2, . . . , Bm} are two ex-
periments. The conditional entropy of experiment B given experiment
A is

H(B|A) =

n∑

i=1

P (Ai).H(B|Ai). (2.30)

It holds:

n∑

i=1

P (Ai).H(B|Ai) =

n∑

i=1

P (Ai).H
(
P (B1|Ai), P (B2|Ai), . . . , P (Bm|Ai)

)
=

= −
n∑

i=1

m∑

j=1

P (Ai).P (Bj |Ai). log2(P (Bj |Ai)) =

= −
n∑

i=1

m∑

j=1

P (Ai).
P (Ai ∩Bj)

P (Ai)
. log2

(
P (Ai ∩Bj)

P (Ai)

)

=

= −
n∑

i=1

m∑

j=1

P (Ai ∩Bj). log2

(
P (Ai ∩Bj)

P (Ai)

)

.

Hence we can write:

H(B|A) = −
n∑

i=1

m∑

j=1

P (Ai ∩Bj). log2

(
P (Ai ∩Bj)

P (Ai)

)

(2.31)

Definition 2.5. Let A = {A1, A2, . . . , An}, B = {B1, B2, . . . , Bm} are the
experiments on a probability space (Ω,A, P). Then the joint experiment of
experiments A, B is the experiment

A ∧ B =
{
Ai ∩Bj | Ai ∈ A, Bj ∈ B

}
. (2.32)

After executing the experiment A and afterwards the experiment B, we
obtain the same total amount of information as by the executing the joint
experiment A ∧ B.
Execute the experiment A – the mean value of obtained information from this
experiment is H(A). The remaining entropy of experiment B after executing
experiment A is H(B|A) so it should hold that H(A∧ B) = H(A) +H(B|A).
The following reasoning gives the exact proof of the last statement.

46 CHAPTER 2. ENTROPY

By theorem 2.6 (page 28) the equation (2.12) holds. Let A ∧ B be the joint
experiment of experiments A, B. Denote qij = P (Ai ∩Bj), pi = P (Ai). Then

pi = P (Ai) =
m∑

j=1

P (Ai ∩Bj) =
m∑

j=1

qij .

Assumptions of theorem 2.6 are fulfilled and that is why

H(A ∧ B) = H

q11, q12, . . . q1m
︸ ︷︷ ︸

p1

, q21, q22, . . . q2m
︸ ︷︷ ︸

p2

, . . . , qn1, qn2, . . . qnm
︸ ︷︷ ︸

pn

 =

= H(p1, p2, . . . , pn) +
m∑

j=1

pi.H

(
qi1
pi
,
qi2
pi
, . . . ,

qim
pi

)

=

= H
(
P (A1), P (A2), . . . , P (An)

)
+

+

m∑

i=1

P (Ai)H

(
P (Ai ∩B1)

P (Ai)
,
P (Ai ∩B2)

P (Ai)
, . . . ,

P (Ai ∩Bm)

P (Ai)

)

=

= H(A) +H(B|A)

Hence the following theorem hods:

Theorem 2.12. Let A = {A1, A2, . . . , An}, B = {B1, B2, . . . , Bm} are two
experiments on a probability space (Ω,A, P). Then

H(A ∧ B) = H(A) +H(B|A) (2.33)

Equation (2.33) says that H(B|A) is the remaining entropy of joint experi-
ment A ∧ B after executing the experiment A.

Definition 2.6. Let A = {A1, A2, . . . , An}, B = {B1, B2, . . . , Bm} are experi-
ments on a probability space (Ω,A, P). We say that the experiments A, B are
statistically independent (or only independent) if for every i = 1, 2, . . . , n,
j = 1, 2, . . . ,m the events Ai, Bj are independent.

2.7. MUTUAL INFORMATION OF TWO EXPERIMENTS 47

2.7 Mutual information of two experiments

Return again to the situation where we are interested in the result of
the experiment B with the entropy H(B). We are not able to execute this
experiment from some reasons but we can execute another experiment A. After
executing the experiment A, entropy of experiment B changes from H(B) to
H(B|A) – this is the mean value of additional information obtainable from the
experiment B after executing the experiment A. The differenceH(B)−H(B|A)
can be considered to be the mean value of information about the experiment B
contained in the experiment A.

Definition 2.7. The mean value of information I(A,B) about the
experiment B in the experiment A is

I(A,B) = H(B)−H(B|A). (2.34)

Theorem 2.13.

I(A,B) = H(A) +H(B)−H(A ∧ B) (2.35)

Proof. From (2.33) it follows: H(B|A) = H(A ∧ B) − H(A). Substitute
H(A ∧ B) − H(A) for H(B|A) in (2.34) and obtain the required formula
(2.35). �

We can see from formula (2.35) that I(A,B) = I(B,A) – I(A,B) is a sym-
metrical function. Hence the mean value of information about the experiment
B in the experiment A equals to the mean value of information about the exper-
iment A in the experiment B. That is why the value I(A,B) is called mutual
information of experiments A, B.

Theorem 2.14. Let A = {A1, A2, . . . , An}, B = {B1, B2, . . . , Bm} are two
experiments on a probability space (Ω,A, P). Then

I(A,B) =

n∑

i=1

m∑

j=1

P (Ai ∩Bj). log2

(
P (Ai ∩Bj)

P (Ai).P (Bj)

)

. (2.36)

Proof. A = {A1, A2, . . . , An} is a partition of the space Ω, therefore

Bj = Bj ∩Ω = Bj ∩
n⋃

i=1

Ai =
n⋃

i=1

Ai ∩Bj .

48 CHAPTER 2. ENTROPY

Since union on the left hand side of the last expression is union of disjoint sets
it holds:

P (Bj) =
n∑

i=1

P (Ai ∩Bj) .

Substituting for H(B|A) from equation (2.31) into (2.34) we get:

I(A,B) = H(B)−H(B|A) =

= −
m∑

j=1

P (Bj). log2 P (Bj) +
n∑

i=1

m∑

j=1

P (Ai ∩Bj). log2

(
P (Ai ∩Bj)

P (Ai)

)

=

= −
m∑

j=1

n∑

i=1

P (Ai∩Bj). log2 P (Bj)+

n∑

i=1

m∑

j=1

P (Ai∩Bj). log2

(
P (Ai ∩Bj)

P (Ai)

)

=

=

n∑

i=1

m∑

j=1

P (Ai ∩Bj).

[

log2

(
P (Ai ∩Bj)

P (Ai)

)

− log2 P (Bj)

]

=

=

n∑

i=1

m∑

j=1

P (Ai ∩Bj). log2

(
P (Ai ∩Bj)

P (Ai).P (Bj)

)

�

Theorem 2.15. Let A = {A1, A2, . . . , An}, B = {B1, B2, . . . , Bm} are two
experiments on a probability space (Ω,A, P). Then

0 ≤ I(A,B), (2.37)

with equality if and only if A, B are statistically independent.

Proof. We will make use of formula (2.36) from the theorem 2.14 and inequality
lnx ≤ x− 1 which is valid for all real x > 0 with equality if and only if x = 1.

P (Ai ∩Bj). log2

(
P (Ai).P (Bj)

P (Ai ∩Bj)

)

= P (Ai ∩Bj). ln(2). ln

(
P (Ai).P (Bj)

P (Ai ∩Bj)

)

≤

≤ P (Ai∩Bj). ln(2).

[(
P (Ai).P (Bj)

P (Ai ∩Bj)

)

− 1

]

= ln(2). [P (Ai).P (Bj)− P (Ai ∩Bj)] ,

with equality if and only if
P (Ai).P (Bj)

P (Ai ∩Bj)
= 1, i. e., if and only if Ai, Bj are

independent events.

2.7. MUTUAL INFORMATION OF TWO EXPERIMENTS 49

From the last formula we have:

−I(A,B) =

n∑

i=1

m∑

j=1

P (Ai ∩Bj). log2

(
P (Ai).P (Bj)

P (Ai ∩Bj)

)

≤

≤ ln(2).

[
n∑

i=1

m∑

j=1

(
P (Ai).P (Bj)− P (Ai ∩Bj)

)

]

=

= ln(2).

[
n∑

i=1

m∑

j=1

P (Ai).P (Bj)−
n∑

i=1

m∑

j=1

P (Ai ∩Bj)

︸ ︷︷ ︸

=1

]

=

= ln(2).

[
n∑

i=1

P (Ai)

m∑

j=1

P (Bj)

︸ ︷︷ ︸

=1

−1

]

= ln(2).

[
n∑

i=1

P (Ai)

︸ ︷︷ ︸

=1

−1

]

= 0,

with equality if and only if all pairs of events Ai, Bj for i = 1, 2, . . . , n and for
j = 1, 2, . . . ,m are independent . �

Theorem 2.16.

H(B|A) ≤ H(B), (2.38)

with equality if and only if A, B are statistically independent.

Proof. The statement of the theorem follows immediately from the inequality
0 ≤ I(A,B) = H(B)−H(B|A). �

Theorem 2.17.

H(A ∧ B) ≤ H(A) +H(B), (2.39)

with equality if and only if A, B are statistically independent.

Proof. It follows from theorem 2.13, formula (2.35), and from 2.15:

0 ≤ I(A,B) = H(A) +H(B)−H(A ∧ B),

with equality if and only if A, B are statistically independent. �

50 CHAPTER 2. ENTROPY

2.7.1 Summary

The conditional entropy of the experiment B given the event Ai is

H(B|Ai) = H
(
P (B1|Ai), . . . , P (Bm|Ai)

)
= −

m∑

j=1

P (Bj |Ai). log2(P (Bj |Ai)).

The conditional entropy of experiment B given experiment A is

H(B|A) =

n∑

i=1

P (Ai).H(B|Ai).

It holds

H(B|A) = −
n∑

i=1

m∑

j=1

P (Ai ∩Bj). log2

(
P (Ai ∩Bj)

P (Ai)

)

.

The joint experiment of experiments A, B is the experiment

A ∧ B =
{
Ai ∩Bj | Ai ∈ A, Bj ∈ B

}
.

It holds: H(A ∧ B) = H(A) +H(B|A).

The mutual information of experiments A, B is

I(A,B) = H(B)−H(B|A).

It holds:

I(A,B) = H(A) +H(B)−H(A ∧ B)

I(A,B) =

n∑

i=1

m∑

j=1

P (Ai ∩Bj). log2

(
P (Ai ∩Bj)

P (Ai).P (Bj)

)

.

The following relations hold:

0 ≤ I(A,B), H(B|A) ≤ H(B), H(A ∧B) ≤ H(A) +H(A)

with equalities if and only if A and B are statistically independent.

Chapter 3

Sources of information

3.1 Real sources of information

Any object (person, device, equipment) that generates successive messages on its
output can be considered a source of information Thus a man using a lamp
to flash out characters of Morse code, a keyboard transmitting 8-bit words,
a telephone set generating analog signal with frequency from 300 to 3400 Hz,
a primary signal from audio CD-reader outputting 44100 16-bit audio samples
per second, a television camera producing 25 frames per second, etc.

We can see that the television signal is much more complicated than the
telephone one. But everyone will agree that 10 minutes of watching TV test
pattern (transmitted by the complicated signal) gives less information than 10
minutes of telephone call.

Sources of information can produce the signal in discrete time intervals,
or continuously in time. The sources that produces messages in discrete time
intervals from an enumerable set of possibilities are called discrete. The sources
which are not discrete are called continuous (e. g., speech and music sources).
Every continuous signal can be measured in sufficiently small time intervals and
replaced by the corresponding sequence of measured values with an arbitrary
good accuracy. Such a procedure is called sampling. Thus every continuous
source can be approximated by a discrete source. It shows that digital signals
can be transmitted and stored with extraordinary quality, more effectively, and
reliably than analog ones. Moreover, digital processing of sound and picture
offers incredible tools. That is why there are plans to replace all analog

52 CHAPTER 3. SOURCES OF INFORMATION

TV broadcasting by a digital system. Therefore we will study only discrete
information sources with finite alphabet.

We will assume that in discrete time moments t = t1, t2, t3, . . . the source
produces messages Xt1 , Xt2 , Xt3 , . . . which are discrete random variables taking
only finite number of values. The finite set of possible messages produced by the
source is called source alphabet, the elements of source alphabet are called
characters or source characters.

Time intervals between time moments t = t1, t2, t3, . . . may be regular
or irregular. For example the source transmitting Morse code uses symbols
”.” ”—” and ”/” (pause). The time intervals between two successive symbols
are not equal since ”.” is shorter than ”—”.

However, it is advantageous to suppose that all time intervals between
successive characters are the same and equal to 1 time unit. Then we will
work with the sequence of discrete random variables X1, X2, X3

Definition 3.1. The discrete random process is a sequence of random
variables X = X1, X2, X3 If Xi takes the value ai for i = 1, 2, . . . , the
sequence a1, a2, . . . is called realization of random process X .

In this chapter we will study the information productivity of various sources
of information. Discrete sources of information differ one from another by trans-
mitting frequency, by cardinalities of source alphabets, and by probability dis-
tributions of random variables Xi. The dependency of information productivity
on the source frequency is simple (is directly proportional to the frequency).
Therefore we will characterise the information sources by the amount of infor-
mation per one transmitted character. We will see that information productivity
of an information source depends not only on cardinality of source alphabet, but
also on probability distribution of random variables Xi.

3.2 Mathematical model of information source

Definition 3.2. Let X be a finite nonempty set, let X∗ be the set of all finite
sequences of elements from X including an empty sequence denoted by e. The
set X is called alphabet, the elements of X are characters of X , the elements
of the set X∗ are called words, e empty word. Denote by Xn the set of all
ordered n-tuples of characters from X (finite sequences of n characters from X).
Every element x of Xn is called word of the length n, the number n is called
length of the word x ∈ Xn.

3.2. MATHEMATICAL MODEL OF INFORMATION SOURCE 53

Let P : X∗ → R is a real nonnegative function defined on X∗ with the following
properties:

1. P (e) = 1 (3.1)

2.
∑

(x1,...,xn)∈Xn

P (x1, . . . , xn) = 1 (3.2)

3.
∑

(yn+1,...,yn+m)∈Xm

P (x1, . . . , xn, yn+1, . . . , yn+m) = P (x1, . . . , xn) (3.3)

Then the ordered couple Z = (X∗, P) is called source of information or
shortly source. The number P (x1, x2, . . . , xn) is called probability of the
word x1, . . . , xn.

The number P (x1, x2, . . . , xn) expresses the probability of the event that
the source from its start up generates the character x1 in time moment 1, the
character x2 in time moment 2 etc., and the character xn in time moment n.
In other words, P (x1, x2, . . . , xn) is the probability of transmitting the word
x1, x2, . . . , xn in n time moments starting with the moment of source start up.

The condition (3.1) says that the source generates the empty word in 0 time
moments with probability 1. The condition (3.2) says that in n time moments
the source surely generates some word of the length n. The third condition
(3.3), called also the condition of consistency, expresses the requirement that
the probability of all words of the length n + m with prefix x1, x2, . . . , xn is
equal to the probability P (x1, x2, . . . , xn) of the word x1, x2, . . . , xn since

{y1, y2, . . . , yn+m | y1 = x1, y2 = x2, . . . , yn = xn} =

=
⋃

z1,z2...,zm∈Xm

{x1, x2, . . . , xn, z1, z2, . . . , zm} .

It is necessary to note, in this place, two differences between the linguistic
and our notion of the term word. The word in linguistics is understood to
be such a sequence of characters which is an element of the set of words –
vocabulary of the given language. In informatics the word is an arbitrary finite
sequence of characters. The word ”weekend” is an English word since it can
be found in the English vocabulary but the word ”kweeedn” is not, while both
mentioned character sequences are words by definition 3.2.

54 CHAPTER 3. SOURCES OF INFORMATION

The second difference is that in natural language the words are separated
by space character ”xy” unlike to our definition 3.2 by which the sequence
x1, x2, . . . , xn can be understood as one long word, or as n one-character words,
or several successive words obtained by dividing the sequence x1, x2, . . . , xn in
arbitrary places.

We are interested in probability Pn(y1, y2 . . . , ym) of transmitting the word
y1, y2 . . . , ym from time moment n, more exactly in time moments n, n +
1, . . . , n+m− 1. This probability can be calculated as follows:

Pn(y1, y2, . . . , ym) =
∑

(x1,...,xn−1)∈Xn−1

P (x1, x2, . . . , xn−1, y1, y2, . . . , ym) . (3.4)

Definition 3.3. The source Z = (X∗, P) is called stationary if the proba-
bilities Pi(x1, x2, . . . , xn) for i = 1, 2, . . . do not depend on i,
i. e., if for every i and every x1, x2 . . . , xn ∈ Xn

Pi(x1, x2, . . . , xn) = P (x1, x2, . . . , xn) .

Denote by Xi the discrete random variable describing the transmission one
character from the source in time instant i. Then the event ”The source
transmitted the character x in time instant i” can be written down as [Xi = x]
and hence P ([Xi = x]) = Pi(x). Generating the word x1, x2, . . . , xn in time
i is the event [Xi = x1] ∩ [Xi+1 = x2] ∩ · · · ∩ [Xi+n−1 = xn], shortly [Xi =
x1, Xi+1 = x2, . . . , Xi+n−1 = xn]. Therefore we can write

P ([Xi = x1, Xi+1 = x2, . . . , Xi+n−1 = xn]) = Pi(x1, x2, . . . , xn).

Definition 3.4. The source Z = (X∗, P) is called independent, or memo-
ryless if for arbitrary i, j, n, m such that i+ n ≤ j it holds:

P
(

[Xi = x1, Xi+1 = x2, . . . , Xi+n−1 = xn] ∩

∩ [Xj = y1, Xj+1 = y2, . . . , Xj+m−1 = ym]
)

=

= P
(
[Xi = x1, Xi+1 = x2, . . . , Xi+n−1 = xn]

)
.

.P
(
[Xj = y1, Xj+1 = y2, . . . , Xj+m−1 = ym]

)
.

3.3. ENTROPY OF SOURCE 55

The source is independent, or memoryless if generating of an arbitrary word
in time j does not depend on anything transmitted before time j

The source transmitting in Slovak language is not memoryless. Černý in
[5] shows that there are many Slovak words containing ”ZA” but there are no
Slovak words containing ”ZAZA”. It is P (ZA) > 0 and by assumption of mem-
orylessness it should be P (ZAZA) = P (ZA).P (ZA) > 0 but P (ZAZA) = 0.

From a short term period Slovak (or any other) language could be consid-
ered stationary, but languages change during centuries – some ancient words
disappear and new ones appear (radio, television, internet, computer, etc.) The
stationarity of source is one of basic assumptions under which it is possible to
obtain usable results in the information theory. From the short term point of
view this assumption is fulfilled. Hence we will suppose that the sources we will
work with are all stationary.

3.3 Entropy of source

Let Z = (Z∗, P) be a stationary source with source alphabet
Z = {a1, a2, . . . , am}. We want to know the mean value of information
obtainable from the information about the character generated in time 1.
Transmission of a character in an arbitrary time can be regarded as the
execution of the experiment

B =
{
{a1}, {a2}, . . . , {am}

}

with probabilities p1 = P (a1), p2 = P (a2), . . . , pm = P (am). The entropy of
this experiment is H(B) = H(p1, p2, . . . , pm) – the mean value of information
obtained by this experiment.

Now let us calculate the amount of information of two first successive
characters generated by a stationary source Z = (Z∗, P). The corresponding
experiment will be now:

C2 =
{
(ai1 , ai2) | ai1 ∈ Z, ai2 ∈ Z

}
.

56 CHAPTER 3. SOURCES OF INFORMATION

The former experiment B can be represented as:

B =
{
{a1} × Z, {a2} × Z, . . . , {am} × Z

}
.

Define D =
{
Z × {a1}, Z × {a2}, . . . , Z × {am}

}
, then C2 = B ∧ D.

From stationarity of the source Z = (Z∗, P) it follows:

H(D) = H(B) = H(p1, p2, . . . , pm).

By theorem 2.17 (page 49) it holds:

H(C2) = H(B ∧ D) ≤ H(B) +H(D) = 2.H(B) .

We prove this property for words of the length n by mathematical induction
on n.
Suppose that

Cn =
{
(ai1 , ai2 , . . . , ain) | aik

∈ Z, for k = 1, 2, . . . , n
}

and that H(Cn) ≤ n.H(B). The entropy of experiment Cn is the same as that
of

C′
n =

{
(ai1 , ai2 , . . . , ain)× Z | aik

∈ Z, for k = 1, 2, . . . , n
}
.

Denote

Cn+1 =
{
(ai1 , ai2 , . . . , ain+1) | aik

∈ Z, for k = 1, 2, . . . , n+ 1
}
,

D =
{
Zn × {a1}, Z

n × {a2}, . . . , Z
n × {am}

}
,

then

H(Cn+1) = H(C′
n ∧ D) ≤ H(C′

n) +H(D) ≤

≤ n.H(B) +H(B) = (n+ 1).H(B) .

We have proved that for all integer n > 0 it holds

H(Cn) ≤ n.H(B), i. e.,
1

n
H(Cn) ≤ H(B).

3.3. ENTROPY OF SOURCE 57

We can see that in the case of stationary source the mean value of entropy

per one character
1

n
H(Cn) is not greater than the entropy H(B) of the first

character. This leads to the idea to define the entropy of the source as the
average entropy per character for very long words.

Definition 3.5. Let Z = (Z∗, P) be a source of information. Let exists the
limit

H(Z) = − lim
n→∞

1

n
.
∑

(x1,...,xn)∈Z

P (x1, x2, . . . , xn). log2 P (x1, x2, . . . , xn). (3.5)

Then the number H(Z) is called entropy of the source Z.

The following theorem says how to calculate the entropy of a stationary
independent source Z = (Z∗, P)

Theorem 3.1. Let (Z∗, P) be a stationary independent source. Then

H(Z) = −
∑

x∈Z

P (x). log2 P (x). (3.6)

Proof. It holds:

∑

(x1,...,xn)∈Z

P (x1, x2, . . . , xn). log2(P (x1, x2, . . . , xn)) =

=
∑

(x1,...,xn)∈Z

P (x1).P (x2), . . . , P (xn).
[
log2 P (x1)+ log2 P (x2)+ · · ·+log2 P (xn)

]
=

=
∑

(x1,...,xn)∈Z

P (x1).P (x2), . . . , P (xn). log2 P (x1)+

+
∑

(x1,...,xn)∈Z

P (x1).P (x2), . . . , P (xn). log2 P (x2)+

+ · · ·+

+
∑

(x1,...,xn)∈Z

P (x1).P (x2), . . . , P (xn). log2 P (xn) =

=
∑

x1∈Z

P (x1). log2 P (x1) .
∑

(x2,...,xn)∈Z

P (x2).P (x3), . . . , P (xn)

︸ ︷︷ ︸

=1

+ · · · =

58 CHAPTER 3. SOURCES OF INFORMATION

=
∑

x1∈Z

P (x1). log2 P (x1)+
∑

x2∈Z

P (x2). log2 P (x2)+· · ·+
∑

x3∈Z

P (x3). log2 P (x3) =

= n.
∑

x∈Z

P (x). log2 P (x).

The desired assertion of the theorem follows from the last expression. �

Remark. The assumption of source stationarity without independence is not
enough to guarantee the existence of the limit (3.5).

Theorem 3.2. Shannon – Mac Millan. Let Z = (Z∗, P) be a stationary
independent source with entropy H(Z) . Then for every ε > 0 there exists an
integer n(ε) such that for all n ≥ n(ε) it holds:

P

{

x1, . . . xn ∈ Z
n |
∣
∣
∣
1

n
. log2 P (x1, . . . xn) +H(Z)

∣
∣
∣ ≥ ε

}

< ε . (3.7)

We introduce this theorem in its simplest form and without the proof. It
holds also for much more general sources including natural languages. However,
the mentioned more general sources can hardly be defined and studied without
an application of the measure theory.

The interested reader can find some more general formulations of Shannon –
Mac Millan theorem in the book [9]. The cited book uses as simple mathematical
tools as possible.

Denote

E(n, ε) =

{

x1, . . . xn ∈ Z
n |
∣
∣
∣
1

n
. log2 P (x1, . . . xn) +H(Z)

∣
∣
∣ < ε

}

(3.8)

Shannon – Mac Millan theorem says that for every ε > 0 there exists a set
E(n, ε) for which it holds P (E(n, ε)) > 1− ε.
It holds:

(x1, . . . , xn) ∈ E(n, ε) ⇐⇒ −ε <
1

n
log2 P (x1, . . . , xn) +H(Z) < ε ⇐⇒

⇐⇒ −n(H(Z) + ε) < log2 P (x1, . . . , xn) < −n(H(Z)− ε) ⇐⇒

⇐⇒ 2−n(H(Z)+ε) < P (x1, . . . , xn) < 2−n(H(Z)−ε)

3.3. ENTROPY OF SOURCE 59

Let |E(n, ε)| be the number of elements of the set E(n, ε). Since the probability
of every element of E(n, ε) is greater than 2−n(H(Z)+ε), we have

1 ≥ P (E(n, ε)) > |E(n, ε)|.2−n(H(Z)+ε).

At the same time the probability of every element of E(n, ε) is less than
2−n(H(Z)−ε) from which it follows:

1− ε < P (E(n, ε)) < |E(n, ε)|.2−n(H(Z)−ε).

From the last two inequalities we have:

(1 − ε).2n(H(Z)−ε) < |E(n, ε)| < 2n(H(Z)+ε) (3.9)

The set of all words of the length n is decomposed into a significant set (in the
sense of probability) E(n, ε) with approximately 2n.H(Z) words, the probability
of which is approximately equal to 2H(Z), and to the rest of words with negligible
total probability.

Slovak language uses 26 letters of alphabet without diacritic marks and 15
letters with the diacritic marks á, č, ď, é, ı́, ľ, ĺ, ň, ó, ó, ť, ú, ý, ž.

Suppose that Slovak language uses alphabet Z with 40 letters. Surely the
entropy of Slovak language is less than 2. The number of all 8-letter words of
Z is 408, the number of significant words is |E(8, ε)| ≈ 2n.H(Z) = 28.2 = 216.

It holds:
|E(8, ε)|

|Z|
≈

216

408
= 6.10−8.

The set E(8, ε) of all significant 8-letter words contains only 6 millionths of one
percent of all 8-letter words.

60 CHAPTER 3. SOURCES OF INFORMATION

3.4 Product of information sources

Definition 3.6. Let Z1 = (A∗, P1), Z2 = (B∗, P2) be two sources. The
product of sources Z1, Z2 is the source Z1 × Z2 = ((A × B)∗, P), where
(A × B) is the Cartesian product of sets A and B (i. e., the set of all ordered
couples (a, b) with a ∈ A and b ∈ B), and where P (e) = 1 (the probability of
transmitting of the empty word in 0 time moments) and where

P
(
(a1, b1), (a2, b2), . . . , (an, bn)

)
= P (a1, a2, . . . , an).P (b1, b2, . . . , bn) (3.10)

for an arbitrary ai ∈ A, bj ∈ B, i, j ∈ {1, 2, . . . , n}.

Theorem 3.3. The product Z1×Z2 of sources Z1, Z2 is correctly defined, i. e.,
the probability function P fulfills (3.1), (3.2), (3.3) from definition 3.2.

Proof. Let ai ∈ A, bi ∈ B for i = 1, 2, . . . , n, let pj ∈ A, qj ∈ B for
j = 1, 2, . . . ,m. We are to prove (3.1), (3.2), (3.3) from definition 3.2 (page
52). These equations are now in the following form:

1. P (e) = 1 (3.11)

2.
∑

(a1,b1),...,(an,bn)∈(A×B)n

P
(
(a1, b1), (a2, b2), . . . , (an, bn)

)
= 1 (3.12)

3.
∑

(p1,q1),...,(pm,qm)∈(A×B)m

P
(
(a1, b1), (a2, b2), . . . , (an, bn), (p1, q1), . . . , (pm, qm)

)
=

= P
(
(a1, b1), (a2, b2), . . . , (an, bn)

)
(3.13)

First equation (3.11) follows from definition 3.2 of the product of sources.
Now we will prove the third equation.

∑

(p1,q1),...,(pm,qm)∈(A×B)m

P
(
(a1, b1), (a2, b2), . . . , (an, bn), (p1, q1), . . . , (pm, qm)

)
=

=
∑

p1p2...pm∈Am

∑

q1q2...qm∈Bm

P (a1, . . . , an, p1, . . . , pm).P (b1, . . . , bn, q1, . . . , pm) =

=
∑

p1p2...pm∈Am

P (a1, . . . , an, p1, . . . , pm)
∑

q1q2...qm∈Bm

P (b1, . . . , bn, q1, . . . , pm) =

= P (a1, a2, . . . , an) . P (b1, b2, . . . , bn) = P
(
(a1, b1), (a2, b2), . . . , (an, bn)

)
.

The second equation can be proved by a similar way. �

3.4. PRODUCT OF INFORMATION SOURCES 61

Theorem 3.4. Let Z1, Z2 be two sources with entropies H(Z1), H(Z2). Then

H(Z1 ×Z2) = H(Z1) +H(Z2) . (3.14)

Proof.

H(Z1 ×Z2) =

= lim
n→∞

1

n

∑

(a1,b1),...,(an,bn)∈(A×B)n

P
(
(a1, b1), . . . , (an, bn)

)
. log2 P

(
(a1, b1), . . . , (an, bn)

)
=

= lim
n→∞

1

n

∑

(a1,b1),...,(an,bn)∈(A×B)n

{

P (a1, . . . , an).P (b1, . . . , bn).

. [log2 P (a1, . . . , an) + log2 P (b1, . . . , bn)]

}

=

= lim
n→∞

1

n

∑

(a1,b1),...,(an,bn)∈(A×B)n

P (a1, . . . , an).P (b1, . . . , bn). log2 P (a1, . . . , an) +

+
∑

(a1,b1),...,(an,bn)∈(A×B)n

P (a1, . . . , an).P (b1, . . . , bn). log2 P (b1, . . . , bn)

 =

= lim
n→∞

1

n

∑

a1,...,an∈An

P (a1, . . . , an). log2 P (a1, . . . , an) .
∑

b1,...,bn∈Bn

P (b1, . . . , bn)

︸ ︷︷ ︸

=1

+

+
∑

b1,...,bn∈Bn

P (b1, . . . , bn) log2 P (b1, . . . , bn) .
∑

a1,...,an∈An

P (a1, . . . , an)

︸ ︷︷ ︸

=1

=

= lim
n→∞

1

n

∑

a1,...,an∈An

P (a1, . . . , an). log2 P (a1, . . . , an)+

+ lim
n→∞

1

n

∑

b1,...,bn∈Bn

P (b1, . . . , bn) log2 P (b1, . . . , bn) = H(Z1) +H(Z2).

�

62 CHAPTER 3. SOURCES OF INFORMATION

Definition 3.7. Let Z = (A∗, P) be a source. Define Z2 = Z ×Z and further
by induction Zn = Zn−1 ×Z.

The source Zn = Z × Z × · · · × Z
︸ ︷︷ ︸

n-times

is the source with alphabet An. Applying

the theorem 3.4 and using mathematical induction we can get the following
theorem:

Theorem 3.5. Let Z be a source withe entropy H(Z). Then it holds for the
entropy H(Zn) of Zn:

H(Zn) = n.H(Z) (3.15)

Definition 3.8. Let Z = (A∗, P) be a source. Denote Z(k) =
(
(Ak)∗, P(k)

)

the source with the alphabet Ak, where P(k)(a1,a2, . . . ,an) for ai ∈ Ak,
ai = ai1ai2 . . . aik is defined as follows:

P(k)(a1,a2, . . . ,an) = P (a11, a12, . . . , a1k, a21, a22, . . . , a2k, . . . , an1, an2, . . . , ank)

Remark. The source Z(k) is obtained from the source Z in such a way that we
will take from the source Z every k-th moment the whole k-letter output word
and we will consider this word of length k as a single letter of alphabet Ak.

Attention! There is an essential difference between Z(k) and Zk.
While the output words of the source Z(k) are k-tuples of successive letters of

original source Z and their letters can be dependent, the words of the source Zk

originated as k-tuples of outcomes of k mutually independent identical sources
and the letters are independent in separate output words.
However, in the case of independent stationary source Z, the sources Z(k) and

Zk are equivalent.

Theorem 3.6. Let Z is a source with entropy H(Z). Let H(Z(k)) be the entropy
of the source Z(k). Then

H(Z(k)) = k.H(Z) (3.16)

Proof. It holds:

H(Z(k)) = lim
n→∞

1

n

∑

a1,...,an∈An

P(k)(a1,a2, . . . ,an) =

= lim
n→∞

1

n

∑

aij∈A for 1≤i≤n, 1≤j≤k

P (a11, . . . , a1k, a21, . . . , a2k, . . . , an1, . . . , ank) =

3.5. SOURCE AS A MEASURE PRODUCT SPACE* 63

= lim
n→∞

1

n

∑

x1,x2,...,xn.k∈A

P (x1, x2, . . . , xn.k) =

= k.

 lim
n→∞

1

k.n

∑

x1,x2,...,xn.k∈A

P (x1, x2, . . . , xn.k)

 = k.H(Z) (3.17)

�

The last theorem says that the mean value of information per one k-letter word
of the source Z (i. e., one letter of the source Z(k)) is the k-multiple of the mean
value of information per one letter. This is not a surprising fact. One would
expect that the mean information per letter will be the same regardless we take
from the source single letters, or k-letter words.

3.5 Source of information

as a measure product space*

In spite of the fact that the model of the last section allows to define and to prove
many useful properties of information sources, it has several disadvantages. The
principal one of them is that the function P (x1, x2, . . . , xn) is not a probability
measure on the set Z∗ of all words of alphabet Z

There exists a model which has not the disadvantages mentioned above but
it requires the utilization of measure theory. This part is based on the theory of
extension of measures and the theory of product measure spaces (3-rd and 7-th
chapter of the book [6]) and on results of the ergodic theory [3].
Let Z = {a1, a2, . . . , ar}. Denote

Ω =

∞∏

i=−∞

Z (3.18)

the set of all infinite sequences of elements from Z of the form

ω = (. . . , ω−2, ω−1, ω0, ω1, ω2, . . .) .

Let Xi for every integer i be a function defined by the formula:

Xi(ω) = ωi .

Let E1, E2, . . . Ek are subsets of Z. The cylinder is the set

64 CHAPTER 3. SOURCES OF INFORMATION

Cn(E1, E2, . . . , Ek) =

= {ω | Xn(ω) ∈ E1, Xn+1(ω) ∈ E2, . . . , Xn+k−1(ω) ∈ Ek}.

Let x1, x2, . . . , xk is an arbitrary finite sequence of elements from Z. The
elementary cylinder is the set

ECn(x1, x2, . . . , xk) =

= {ω | Xn(ω) = x1, Xn+1(ω) = x2, . . . , Xn+k−1(ω) = xk}.

Remember that we can write:

Cn(E1, E2, . . . , Ek) = · · · × Z × Z × E1 × E2 × · · · ×Ek × Z × Z × . . . ,

resp.

ECn(x1, x2, . . . , xk) = · · · × Z × Z × {x1} × {x2} × · · · × {xk} × Z × Z × . . .

Elementary cylinder ECn(x1, x2, . . . , xk) represents the situation when the
source transmits the word (x1, x2, . . . , xk) in time moments n, n+1, . . . , n+k−1.

Denote by F0 the set of all cylinders. The set F0 contains the empty set (e. g.
cylinder C1(∅) is empty), it contains Ω (since C1(Z) = Ω), it is closed under
the formation of complements, finite intersections and finite unions. Therefore,
there exists the unique smallest σ-algebra F of subsets of Ω containing F0. See
[6], (chapter 7 – Product Spaces).

Definition 3.9. The source of information with alphabet Z is the
probability space Z = (Ω,F , P) where Ω =

∏∞
i=−∞ Z, F is the smallest σ-

algebra of subsets of Ω containing all cylinders and where P is a probability
measure on σ-algebra F .

Remark. Since every cylinder can be written as a finite union of elementary
cylinders it would be enough to define F as the smallest σ-algebra containing
all elementary cylinders.

Remark. The probability space (Ω,F , P) from definition 3.9 is called infinite
product space in the measure theory resources (e. g. [6]).

3.5. SOURCE AS A MEASURE PRODUCT SPACE* 65

Definition 3.9 fulfills what we required. We have defined the source as
a probability space in which a transmission of arbitrary word in arbitrary time
is modelled as an event – an elementary cylinder – and in which various general
properties of sources can be studied.

Definition 3.10. Let (Ω,F , P) be a probability space, let T : Ω → Ω is
a bijection on Ω. Denote for A ⊆ Ω:

T−1A = {ω | T (ω) ∈ A} T (A) = {T (ω)| ω ∈ A}. (3.19)

T−nA can be defined by induction as follows: T−1A is defined in (3.19). If
T−nA is defined then define: T−(n+1)A = T−1(T−nA).
The mapping T is called measurable if for every A ∈ F it holds T−1A ∈ F .
The mapping T is called measure preserving if T is a bijection, both T and
T−1 are measurable and for every A ∈ F it holds P (T−1A) = P (A).
We say that the mapping T is mixing if T is a measure preserving and for
arbitrary sets A,B ∈ F it holds:

lim
n→∞

P (A ∩ T−nB) = P (A).P (B). (3.20)

We say that the set B ∈ F is T -invariant if

T−1B = B.

We say that the mapping T is ergodic, if T is measure preserving and the only
T -invariant sets are the sets with measure 0 or 1.

Theorem 3.7. Let T be a mixing mapping. Then T is ergodic.

Proof. T is measure preserving. It remains to prove that the only T -invariant
sets have measure 0 or 1.

Let B ∈ F is T -invariant, let A ∈ F is an arbitrary measurable set. Then
T−nB = B and hence:

lim
n→∞

P (A ∩ T−nB) = P (A).P (B)

P (A ∩B) = P (A).P (B) for every A ∈ F

P (B ∩B) = P (B).P (B)

P (B) = (P (B))2

(P (B))2 − P (B) = 0

P (B)[1 − P (B)] = 0

From the last equation it follows that P (B) = 0 or P (B) = 1. �

66 CHAPTER 3. SOURCES OF INFORMATION

Theorem 3.8. Ergodic theorem. Let T be an ergodic mapping on a proba-
bility space (Ω,F , P). Then it holds for every measurable set A ∈ F and for
almost all1 ω ∈ Ω:

lim
n→∞

1

n

n∑

i=1

χA

(
T i(ω)

)
= P (A), (3.21)

where χA(ω) is the indicator of the set A, i. e., χA(ω) = 1 if ω ∈ A, otherwise
χA(ω) = 0.

Proof. The proof of the ergodic theorem is complicated, the interested reader
can find it in [3]. �

Definition 3.10 and theorems 3.7, 3.8 hold for arbitrary general probability
spaces.

Let us return now to our source of information Z = (Ω,F , P) where Ω is
a set of infinite (from both sides) sequences of letters from a finite alphabet Z.
Define the bijection T on the set Ω:

Xn(T (ω)) = Xn+1(ω) (3.22)

ω = . . . , ω−2, ω−1, ω0, ω1, ω2, . . .

T (ω) = . . . , ω−1, ω0 , ω1, ω2, ω3, . . .

The mapping T ”shifts” the sequence ω of letters one position to the left – that
is why it is sometimes called left shift.

Let T n(ω) be n-times applied left shift T :

T n(ω) = T (T (. . . T (ω) . . .))
︸ ︷︷ ︸

n-times

.

Here is the exact definition by induction: T 1(ω) = T (ω), T n+1(ω) = T (T n(ω)).

X0(ω) is the letter of the sequence ω transmitted by the source in time 0,
X0(T (ω)) is the letter of the sequence ω transmitted by the source in time 1,
X0(T

2(ω)) is the letter of the sequence ω transmitted by the source in time 2,
etc.

1The term ”for almost all ω ∈ Ω” means: for all ω ∈ Ω−φ where φ ⊂ Ω has zero probability
measure – P (φ) = 0.

3.5. SOURCE AS A MEASURE PRODUCT SPACE* 67

Let us have a cylinder Cn(E1, E2, . . . , Ek), then

T−1Cn(E1, E2, . . . , Ek) = Cn+1(E1, E2, . . . , Ek),

T−mCn(E1, E2, . . . , Ek) = Cn+m(E1, E2, . . . , Ek).

The properties of left shift T with probability measure P fully characterise
all properties of the source. That is why the quadruple Z = (Ω,F , P, T) can be
considered as the source of information.

Definition 3.11. We say that the source Z = (Ω,F , P, T) is stationary if the
left shift T is a measure preserving mapping.

Theorem 3.9. Let F0 be an algebra generating the σ-algebra F . Let T−1A ∈ F0

and P (T−1A) = P (A) for every A ∈ F0. Then T is measure preserving
mapping.

Proof. The proof of this theorem requires knowledge of measure theory proce-
dures. That is why we omit it. The reader can find it in [3]. �

This theorem is typical for the approach to modelling and studying prop-
erties of sources by means of measure theory and for the modelling sources as
product spaces. In many cases it suffices to show some property only for ele-
ments of generating algebra F0 and the procedures of measure theory extend
this property to all events of generated σ-algebra F . The consequence of this
theorem is the fact that for the proof of stationarity of a source Z it suffices to
prove that the shift T preserves the measure of cylinders.

Example 3.1. Let Z = (Ω,F , P, T) be a source with a finite alphabet

Z = {a1, a2, . . . , ar}.

Let p1 = P (a1), p2 = P (a2), . . . , pr = P (ar) be probabilities,
∑r

i=1 pi = 1. For
E ⊆ Z it holds P (E) =

∑

a∈E p(a).
The measure P is defined by the set of its values on the set of elementary
cylinders by the following equation

P
(
ECn(ai1 , ai2 , . . . , aik

)
)

= pi1 .pi2 , . . . , pik
. (3.23)

68 CHAPTER 3. SOURCES OF INFORMATION

This measure can be extended to algebra F0 of all cylinders as follows:

P
(
Cn(E1, E2, . . . , Ek)

)
= P (E1).P (E2).P (Ek). (3.24)

Theorem 3.10. Let F0 be an algebra generating the σ-algebra F , let T : Ω→ Ω
be a bijection. Suppose T−1A ∈ F and P (T−1A) = P (A) for all A ∈ F0. Then
T is a measure preserving mapping.

Proof. For the proof see [3]. �

Measure theory guarantees the existence of the unique measure P on F fulfilling
(3.23). Let Z = (Ω,F , P, T) be a source with probability P fulfilling (3.23) resp.
(3.24). Then the shift T is called Bernoulli shift. The source Z is stationary
and independent. The question is whether it is ergodic.

Let A = Cs(E1, E2, . . . , Ek), B = Ct(F1, F2, . . . , Fl) be two cylinders. If n
is large enough the set A ∩ T−nA is in the form

A ∩ T−nB =

= · · ·×Z×Z×E1×E2×· · ·×Ek×Z×· · ·×Z×F1×F2×· · ·×Fl×Z×Z . . .

which is cylinder Cs(E1, E2, . . . , Ek, Z, . . . , Z, F1, F2, . . . , Fl) whose probability

is by (3.24)
∏k

i=1 P (Ei).
∏l

j=1 P (Fj) = P (A).P (B). For A, B cylinders we
have:

lim
n→∞

P (A ∩ T−nB) = P (A).P (B) (3.25)

Once again we can make use of another theorem of measure theory:

Theorem 3.11. Let F0 is an algebra generating σ-algebra F , T is a measure
preserving mapping on Ω. If (3.25) holds for all A,B ∈ F0 then T is mixing.

Therefore Bernoulli shift is mixing and hence ergodic.

3.5. SOURCE AS A MEASURE PRODUCT SPACE* 69

Let Ω, F , T be as in the previous example. Let P be a general probability
measure on F . Define P (e) = 0 for the empty word e and for arbitrary integer
n > 0 and (x1, x2, . . . , xn) ∈ Zn

P (x1, x2, . . . , xn) =

= P{ω | X1(ω) = x1, X2(ω) = x2, . . . , Xn(ω) = xn}. (3.26)

Then P : Z∗ → 〈0, 1〉. It is easy to show that the function P fulfills (3.1), (3.2)
and (3.3) from definition 3.2 (page 52) and hence (Z∗, P) is an information
source in the sense of definition 3.2.

Let P be a probability measure on F such that the left shift T is measure
preserving. The statement ”T is measure preserving” is equivalent with the
assertion that

Pi(x1, x2, . . . , xn) =

= P{ω | Xi(ω) = x1, Xi+1(ω) = x2, . . . , Xi+n−1(ω) = xn} (3.27)

does not depend on i which is equivalent with definition 3.3 (page 54) of stationa-
rity of the source (Z∗, P). We showed that the source (Ω,F , P, T) can be thought
of as the source (Z∗, P).

On the other hand, given a source (Z∗, P) with function P : Z∗ → 〈0, 1〉
fulfilling (3.1), (3.2) and (3.3) from definition 3.2, we can define the product
space (Ω,F , P, T) where Ω is the product space defined by (3.18), F is the
smallest unique σ-algebra containing all elementary cylinders, T is the left shift
on Ω and P is the unique probability measure such that for arbitrary elementary
cylinder it holds (3.27). Measure theory guarantees the existence and uniqueness
of such measure P . Thus, the source (Z∗, P) can be studied as the source
(Ω,F , P, T). The reader can find corresponding definitions and theorems in [6],
chapter 3 and 7, and in [3].

We have two similar models for source of information – an elementary model
(Z∗, P) and a product space model (Ω,F , P, T). We could easy formulate several
properties of sources in both models. Unfortunately the ergodicity of the source
which was in product space model formulated as ”the only T -invariant events
have probability 0 or 1” cannot be formulated in a similar simple way.

Source ergodicity is a very strong property. The entropy always exists for
ergodic sources. Shannon – Mac Millan theorem (till now formulated only for
stationary independent sources) holds for all ergodic sources.

70 CHAPTER 3. SOURCES OF INFORMATION

As we have shown, natural language (e. g., Slovak, English, etc.) can
be considered stationary but it is not independent. Let A, B be two words
of natural language (i. e., elementary cylinders) then T−nB with large n is
the event that the word B will be transmitted in far future. The larger
time interval between transmitting both words A and B will be, the less the
event T−nB will depend on the event A. Therefore, we can suppose that
limn→∞ P (A ∩ T−nB) = P (A).P (B), and hence that the shift T is mixing
and by theorem 3.7 ergodic.

Natural language can be considered ergodic. Therefore Shann–Mac Millan
theorem and many other important theorems hold for such languages. Most im-
portant ones of them are two Shannon’s theorems on channel capacity (theorems
5.1 and 5.2, page 152).

Chapter 4

Coding theory

4.1 Transmission chain

General scheme of transmission chain is shown here:

Source of signal → Encoder → Channel → Decoder → Receiver

It can happen that a source of signal, a communication channel and a receiver
use different alphabets. A radio studio has a song which is stored on CD in
binary code. This code has to be converted to radio high frequency signal
(ca 100 MHz) what is the signal of communication channel. A radio receiver
turns this signal into sound waves (from 16 Hz to 20 kHz).

If one needs to transmit a message using only flash light capable to produce
only symbols ”.”, ”—” and ”/” he has to encode the letters of his message into
a sequence of mentioned symbols (e. g. using Morse alphabet)

The main purpose of encoding messages is to express the message in char-
acters of alphabet of the communication channel. However, we can have also
additional goals. We can require that the encoded message is as short as pos-
sible (data compression). On the other hand, we can request for such encoding
which allows to detect whether a single error, (or some given limited number
of errors), occurred during transmission. There are even ways of encoding ca-
pable to correct a given limited number of errors. Moreover, we want that the
encoding and the decoding have low computational complexity.

Just mentioned requirements are conflicting and it is not easy to ensure every
single one of them and even harder in combinations. The purpose of encoding

72 CHAPTER 4. CODING THEORY

is not to ensure the secrecy or security of messages, that is why it is necessary
to make a difference between encoding and enciphering – data security is the
objective of cryptography and not that of coding theory.

Coding theory deals with problems of encoding, decoding, data compression,
error detecting and error correcting codes. This chapter contains fundamentals
of coding theory.

4.2 Alphabet, encoding and code

Let A = {a1, a2, . . . , ar} be a finite set with r elements. The elements of A
are called characters, the set A is called alphabet. The set

A∗ =
∞⋃

i=1

Ai ∪ {e}

where e is an empty word is called set of all words of alphabet A. The
length of the word a ∈ A∗ is the number of characters of the word a.
Define a binary operation | on A∗ called concatenation of words as follows:
If b = b1b2 . . . bp, c = c1c2 . . . cq are two words from A∗, then

b|c = b1b2 . . . bpc1c2 . . . cq.

The result of concatenation of two words is written without space, or any other
separating character. Every word can be regarded as the concatenation of
its arbitrary parts according as is convenient. So 01010001 = 0101|0001 =
010|100|01 = 0|1|0|1|0|0|0|1.

Let A = {a1, a2, . . . , ar}, B = {b1, b2, . . . , bs} are two alphabets. The
encoding is a mapping

K : A→ B∗,

i. e., a recipe assigning to every character of alphabet A a word of alphabet B.
Alphabet A is the source alphabet, the characters of A are source charac-
ters, alphabetB is the code alphabet and its characters are code characters.
The set K of all words of the code alphabet is defined as

K = {b | b = K(a), a ∈ A} = {K(a1),K(a2), . . . ,K(ar)}

is called the code, every word of the set K is the code word, other words of
alphabet B are the noncode words.

4.2. ALPHABET, ENCODING AND CODE 73

Only injective encodings K are of practical importance – such that if
ai, aj ∈ A and ai 6= aj then K(ai) 6= K(aj). Therefore we will assume that K
is injective. Every encoding K can be extended to the encoding K∗ of source
words by the formula:

K∗(ai1ai2 . . .in) = K(ai1)|K(ai2)| . . . |K(ain) (4.1)

The encoding K∗ is actually a sequential encoding of characters of the source
word.

An encoding can assign code words of various lengths to various source
characters. Very often we work with encodings where all code words have the
same length. The block encoding of the length n is an encoding where all
code words have the same length n. The corresponding code is the block code
of the length n.

Example 4.1. Let A = {a, b, c, d}, B = {0, 1}, let K(a) = 00, K(b) =
01, K(c) = 10, K(d) = 11. Then the message aabd (i. e., the word in alphabet
A) is encoded as K∗(aabd) = 00000111. After receiving the word 00000111 (and
provided we know the mapping K), we know that every character of source
alphabet was encoded into two characters of code alphabet and hence the only
possible splitting of received message into code words is 00|00|01|11 what leads
to unique decoding of received message. The encoding K is a block encoding of
the length 2.

Example 4.2. The results of exams are 1, 2, 3, 4. We know that most frequent
results are 2 and then 1. Other outcomes are rare. The code words of code
alphabet B = {0, 1} of length two would suffice to encode four results. But we
want to assign a short code word to the frequent outcome 2. Therefore, we will
use the following encoding: K(1) = 01, K(2) = 0, K(3) = 011, K(4) = 111.
The message 1234 will be encoded as 01|0|011|111. When decoding the message
010011111, we have to decode it from behind. We cannot decode from start of
the received message. If we receive a partial message 01111 . . . we do not know
whether it was transmitted as 0|111|1 . . . , or 01|111 . . . , or 011|11 . . . , we cannot
decode character by character, or more precisely, codeword by codeword.

Definition 4.1. We say that the encoding K : A → B∗ is uniquely decod-
able, if every source word a1a1 . . . an can be uniquely retrieved from the encoded
message K∗(a1a1 . . . an), i. e., if the mapping K∗ : A∗ → B∗ is an injection.

74 CHAPTER 4. CODING THEORY

Example 4.3. Extend the source alphabet from example 4.2
to A = {1, 2, 3, 4, 5} and define encoding

K(1) = 01, K(2) = 0, K(3) = 011, K(4) = 111, K(5) = 101.

Note thatK is an injection. Let us have the message 0101101. We have following
possible ways of splitting this message into code words: 0|101|101, 01|01|101,
01|011|01, whereas these ways correspond to source words 255, 115, 131. We
can see that in spite of fact that the encoding K : A → B∗ is an injection, the
corresponding mapping K∗ : A∗ → B∗ is not. K is not an uniquely decodable
encoding.

4.3 Prefix encoding and Kraft’s inequality

Definition 4.2. The prefix of the word b = b1b2 . . . bk is every word

b1, b1b2, . . . , b1b2 . . . bk−1, b1b2 . . . bk.

An encoding resp., a code is called prefix encoding, resp., prefix code, if no
code word is a prefix of another code word.

Remark. Note that every block encoding is a prefix encoding.

Example 4.4. The set of telephone numbers of telephone subscribers is an
example of a prefix code which is not a block code. Ambulance service has the
number 155 and there is no other telephone number starting with 155. The
numbers of regular subscribers are longer. A number of a particular telephone
station is never identical to a prefix of a different station, otherwise the station
with prefix number would always accept a call during the process of dialing the
longer telephone number.

The prefix encoding is the only encoding decodable character by character,
i. e., in the process of receiving a message (and we do not need to wait for the
end of the message). Decoding of received message is as follows:
Find the least number of characters of the message (from the left) creating
a code word K(a) which corresponds to the source character a. Decode this
word as a, discard the word K(a) from the message and continue by the same
way till the end of the received message.

Theorem 4.1. Kraft’s inequality. Let A = {a1, a2, . . . , ar} be a source
alphabet with r characters, let B = {b1, b2, . . . , bn} be code alphabet with n

4.3. PREFIX ENCODING AND KRAFT’S INEQUALITY 75

characters. A prefix code with code word lengths d1, d2, . . . , dr exists if and
only if

n−d1 + n−d2 + · · ·+ n−dr ≤ 1. (4.2)

Inequality (4.2) is called Kraft’s inequality.

Proof. Suppose that the Kraft’s inequality holds (4.2). Sort the numbers di

such that d1 ≤ d2 ≤ · · · ≤ dr. Set K(a1) to an arbitrary word of alphabet B of
the length d1. Now we will proceed by mathematical induction.
Suppose that K(a1), K(a2), . . . , K(ai) are code words of the lengths
d1, d2, . . . , di. When choosing a code word K(ai+1) of the length di+1 we
have to avoid using n(di+1−d1) words of the length di+1 with prefix K(a1),
n(di+1−d2) words of the length di+1 with prefix K(a2) etc. till n(di+1−di) words
of the length di+1 with prefix K(ai), whereas the number of all words of the
length di+1 is ndi+1 . The number of forbidden words is

n(di+1−d1) + n(di+1−d2) + · · ·+ n(di+1−di). (4.3)

Since (4.2) holds, it holds also for the first i+ 1 items of the left side of (4.2):

n−d1 + n−d2 + · · ·+ n−di + n−di+1 ≤ 1. (4.4)

After multiplying both sides of (4.4) by ndi+1 we get:

n(di+1−d1) + n(di+1−d2) + · · ·+ n(di+1−di) + 1 ≤ ndi+1 . (4.5)

By (4.5) the number of forbidden words is less at least by 1 than the number of
all words of the length di+1 – there is at least one word of the length di+1 which
is not forbidden. Therefore, we can define this word as the code word K(ai+1).

Now suppose that we have a prefix code with code word lengths d1, d2, . . . , dr,
let d1 ≤ d2 ≤ · · · ≤ dr. There exist ndr words of the length dr, one of them
is used as K(ar). For every i = 1, 2, . . . , r − 1 the word K(ai) is a prefix of
n(dr−di) words of the length dr (forbidden words) – these words are different
from K(ar) (otherwise the code is not prefix code). Since K(ar) is different
from all forbidden words, it has to hold:

n(dr−d1) + n(dr−d2) + · · ·+ n(dr−dr−1) + 1 ≤ ndr . (4.6)

After dividing both sides of (4.6) by ndr we get the required Kraft’s inequality
(4.2). �

76 CHAPTER 4. CODING THEORY

Remark. Algorithm for construction of prefix code with given code
word lengths d1, d2, . . . , dr. The first part of the proof of the theorem 4.1 is
constructive – it gives directions how to construct a prefix code provided that
the code word lengths d1 ≤ d2 ≤ · · · ≤ dr fulfilling Kraft’s inequality are given.
Choose an arbitrary word of the length d1 as K(a1). Having assigned
K(a1), K(a2), . . . , K(ai), for K(ai+1) choose an arbitrary word w of the
length di+1 for which no of words K(a1), K(a2), . . . , K(ai) is a prefix of w.
The existence of such a word w is guaranteed by Kraft’s inequality.

Theorem 4.2. Mac Millan.
Kraft’s inequality (4.2) holds for every uniquely decodable encoding with source
alphabet A = {a1, a2, . . . , ar} and code alphabet B = {b1, b2, . . . , bn} with code
word lengths d1, d2, . . . , dr.

Proof. Let K be a uniquely decodable encoding with code word lengths
d1 ≤ d2 ≤ · · · ≤ dr. Denote

c = n−d1 + n−d2 + · · ·+ n−dr . (4.7)

Our plan is to show that c ≤ 1.
Let k be an arbitrary natural number. Let Mk be the set of all words of code
alphabet of the type b = K(ai1)|K(ai2)| . . . |K(aik

). The length of such word b
is di1 +di2 + · · ·+dik

and it is less or equal to k.dr since maximum of code word
lengths is dr.
Let us study the following expression:

ck =
[
n−d1 + n−d2 + · · ·+ n−dr

]k
=

n∑

i1=1

n∑

i2=1

· · ·
n∑

ik=1

n−(di1+di2+···+dik
) . (4.8)

Since K is uniquely decodable it holds for two different words ai1ai2 . . . aik
,

a′i1a
′
i2
. . . a′ik

of source alphabet A

K(ai1)|K(ai2)| . . . |K(aik
) 6= K(a′i1)|K(a′i2)| . . . |K(a′ik

) .

Therefore we can assign to every word b = K(ai1)|K(ai2)| . . . |K(aik
) fromMk

exactly one summand n−(di1+di2+···+dik
) on the left side of (4.8) such that its

exponent multiplied by −1 (di1 + di2 + · · · + dik
) equals to the length of the

word b.
As we have shown the maximum of word lengths from the set Mk is kdr.

Denote M = kdr. The expression on the right side of (4.8) is a polynomial of

4.4. SHORTEST CODE - HUFFMAN’S CONSTRUCTION 77

degree M of variable
1

n
. Therefore we can write it in the form:

ck = s1.n
−1 + s2.n

−2 + · · ·+ sM .n−M =
M∑

i=1

si.n
−i.

The item n−i occurs in the sum on the right side of the last equation exactly as
many times as how many words from the set Mk have the length i. Since the
code alphabet has n characters, at most ni words fromMk can have the length
i. Therefore we can write:

ck = s1.n
−1 + s2.n

−2 + · · ·+ sM .n−M ≤

≤ n1.n−1 + n2.n−2 + · · ·+ nM .n−M ≤ 1 + 1 + · · ·+ 1 = M = k.dr (4.9)

and hence
ck

k
≤ dr . (4.10)

The inequality (4.10) has to hold for arbitrary k which implies that c ≤ 1. �

The corollary of Mac Millan theorem is that no uniquely decodable encoding
has shorter code word lengths than the prefix encoding. Since the prefix
encoding has a lot of advantages, e. g. simple decoding character by character,
it suffices to restrict ourselves to the prefix encodings.

4.4 Shortest code - Huffman’s construction

Definition 4.3. Let Z = (A∗, P) be a source transmitting characters of source
alphabet A = {a1, a2, . . . , ar} with probabilities p1, p2, . . . , pr,

∑r
i=1 pi = 1. Let

K be a prefix encoding with code word lengths d1, d2, . . . , dr. Then the mean
code word length of encoding K is

d(K) = p1.d1 + p2.d2 + · · ·+ pr.dr =

r∑

i=1

pi.di . (4.11)

Let us have a message m from the source Z containing a large number N
of characters. We can expect that the length of encoded message m will be
approximately N.d(K). Very often we require that the encoded message is as
short as possible. That is why we are searching for an encoding with minimum
mean code word length.

78 CHAPTER 4. CODING THEORY

Definition 4.4. Let A = {a1, a2, . . . , ar} be a source alphabet with probabili-
ties of characters p1, p2, . . . , pr, let B = {b1, b2, . . . , bn} be a code alphabet. The
shortest n-ary encoding of alphabet A is such encoding K : A→ B∗ which
has the least mean code word length d(K). The corresponding code is called
the shortest n-nary code.

The shortest prefix code was constructed by O. Huffman in 1952. We will
study namely binary codes – codes with code alphabet B = {0, 1} – which are
most important in practice.

4.5 Huffman’s Algorithms

Let A = {a1, a2, . . . , ar} be a source alphabet, let p1, p2, . . . , pr are the proba-
bilities of characters a1, a2, . . . , ar, suppose p1 ≥ p2 ≥ · · · ≥ pr. Let B = {0, 1}
be the code alphabet. Our goal is to find the shortest binary coding of alphabet
A.

We will create step by step a binary rooted tree whose leaf vertices are
a1, a2, . . . , ar. Every node v of the tree has two labels: the probability p(v) and
the character ch(v) ∈ B ∪ {UNDEFINED}.

Step 1: Initialization: Create a graph G = (V,E, p, ch), with vertex set V = A,
edge set E = ∅, p : V → 〈0, 1〉, where p(ai) = pi is the probability of
character ai and ch(v) = UNDEFINED for all v ∈ V . A vertex v ∈ V with
ch(v) = UNDEFINED is called unlabeled.

Step 2: Find two unlabeled u, w ∈ V with two least probabilities p(u), p(w).
Set ch(u) = 0, ch(w) = 1. Extend the vertex set V by a new vertex x,
i. e., set V := V ∪ {x} for some x /∈ V , set p(x) := p(u) + p(w),
ch(x) = UNDEFINED, and E := E ∪ {(x, u), (x,w)} (make x a parent of
both u, w).

Step 3: If G is a connected graph, GO TO Step 4, otherwise continue by Step 2.

Step 4: At this moment G is a rooted tree with leaf vertices corresponding to
the characters of the source alphabet A. All vertices of the tree G expect
the root are labeled by binary labels 0 or 1. There is a unique path from
the root of the tree G to every character ai ∈ A. The sequence of labels
ch() along this path defines the code word assigned to character ai.

The construction of n-ary Huffman’s code is analogical. Suppose the alpha-
bet A has r = n + k.(n − 1) characters (otherwise we can add several dummy

4.6. SOURCE ENTROPY AND LENGTH OF THE SHORTEST CODE 79

characters with zero probabilities – their code words remain unused). Find n
characters of source alphabet with the least probabilities and assign them the
characters of code alphabet in arbitrary order (these will be the last characters
of the corresponding code words). Reduce the alphabet A such that instead of n
characters with the least probabilities we add one fictive character with the total
probability of replaced characters. The reduced alphabet has n+(k−1).(n−1)
characters. If k − 1 > 0 we repeat this procedure, etc.

4.6 Source Entropy

and the Length of the Shortest Code

The entropy of a source Z = (Z∗, P) was defined by definition 3.5 (page 57) as

H(Z) = − lim
n→∞

1

n
.
∑

(x1,...,xn)∈Z

P (x1, x2, . . . , xn). log2 P (x1, x2, . . . , xn) .

(4.12)
For a stationary independent source Z = (A∗, P) with alphabet
A = {a1, a2, . . . , ar} and with character probabilities p1, p2, . . . , pr it was
shown (theorem 3.1, page 57) that

H(Z) = −
r∑

i=1

p1. log2(pi) .

Let K be an arbitrary prefix encoding of alphabet A with code word length
d1, d2, . . . , dr and with mean code word length d = d(K). We want to find out
the relation between the entropy H(Z) and d(K). The simplest case is that of
stationary independent source.
We can write step by step:

H(Z)− d =

r∑

i=1

pi. log2

(
1

pi

)

−
r∑

i=1

pi.di =

r∑

i=1

pi.

[

log2

(
1

pi

)

− di

]

=

=

r∑

i=1

pi.

[

log2

(
1

pi

)

+ log2

(
2−di

)
]

=

r∑

i=1

pi.

[

log2

(
2−di

pi

)]

=

=
1

ln 2
.

r∑

i=1

pi.

[

ln

(
2−di

pi

)]

≤

80 CHAPTER 4. CODING THEORY

≤
1

ln 2
.

r∑

i=1

pi.

(
2−di

pi
− 1

)

=
1

ln 2
.

[
r∑

i=1

2−di −
r∑

i=1

pi

]

=

=
1

ln 2
.

[
r∑

i=1

2−di − 1

]

≤ 0 .

The first inequality follows from well known inequality ln(x) ≤ x− 1 applied to
x = 2−di/pi , the second one holds since natural numbers di are the lengths of
code words of a prefix code, and Kraft’s inequality

∑r
i=1 2−di ≤ 1 holds.

Hence
H(Z) ≤ d(K) (4.13)

holds for an arbitrary prefix encoding (and also for uniquely decodable).

Let di for i = 1, 2, . . . , r are natural numbers such that

− log2(pi) ≤ di < − log2(pi) + 1

for every i = 1, 2, . . . , r. Then the first inequality can be rewritten as follows:

log2

(
1

pi

)

≤ di ⇒
1

pi
≤ 2di ⇒ 2−di ≤ pi .

The last inequality holds for every i, therefore we can write:

r∑

i=1

2−di ≤
r∑

i=1

pi ≤ 1 .

The integers di for i = 1, 2, . . . , r fulfill Kraft’s inequality and that is why there
exists a binary prefix encoding with code word lengths d1, d2, . . . , dr. The mean
code word length of this encoding is:

d =

r∑

i=1

pi.di < −
r∑

i=1

pi.
[
log2(pi) + 1

]
= −

r∑

i=1

pi. log2(pi) +

r∑

i=1

pi = H(Z) + 1.

We have proved that there exists a prefix binary encoding K of alphabet A for
which it holds:

d(K) < H(Z) + 1. (4.14)

Corollary: Let dopt be the length of the shortest prefix binary encoding of
alphabet A. Then

dopt < H(Z) + 1. (4.15)

4.6. SOURCE ENTROPY AND LENGTH OF THE SHORTEST CODE 81

Just proved facts are summarized in the following theorem:

Theorem 4.3. Let Z = (A∗, P) be a stationary independent source with entropy
H(Z), let dopt is the mean code word length of the shortest binary prefix encoding
of A. Then it holds:

H(Z) ≤ dopt < H(Z) + 1. (4.16)

Example 4.5. Suppose that Z = (A∗, P) is a source with the source alphabet
A = {x, y, z} having three characters with probabilities px = 0.8, py = 0.1,
pz = 0.1. Encoding K(x) = 0, K(y) = 10, K(z) = 11 is the shortest binary
prefix encoding of A with the length d(K) = 1×0.8+2×0.1+2×0.1 = 1.2. The
entropy of Z is H(Z) = 0.922 bits per character. Given a source message with
length N , the length of the corresponding binary encoded text is approximately
N×1.2, and its lower bound is equal toN×0.922 by theorem 4.3. A long encoded
text will be 30% longer than the lower bound determined by entropy H(Z).

It is possible to find more visible examples of percentage difference between the
lower bound determined by entropy and the length of the shortest binary prefix
encoding (try px = 0.98, py = 0.01, pz = 0.01). Since no uniquely decodable
binary encoding of source alphabet A can have a less mean code word length,
this example does not offer too much optimism about usefulness of the lower
bound from theorem 4.3.

However, the encoding character by character is not the only possible way
how to encode the source text. In section 3.4 (page 62), in definition 3.8, for
every source Z with entropy H(Z) we defined the source Z(k) with entropy
k.H(Z). The source alphabet of Z(k) is the set of all k-character words of
alphabet A. Provided that Z is a stationary independent source, the source
Z(k) is a stationary independent source, too. For the mean code word length

d
(k)
opt of the shortest binary prefix encoding of alphabet Ak the inequalities (4.16)

from theorem 4.3 are in the form:

H(Z(k)) ≤d
(k)
opt < H(Z(k)) + 1

k.H(Z) ≤d
(k)
opt < k.H(Z) + 1

H(Z) ≤
d
(k)
opt

k
< H(Z) +

1

k
(4.17)

82 CHAPTER 4. CODING THEORY

These facts are formulated in the following theorem:

Theorem 4.4. Fundamental theorem on source coding. Let Z = (A∗, P)
be a stationary independent source with entropy H(Z). Then the mean code word
length of binary encoded text per one character of source alphabet A is bounded
from below by entropyH(Z). Moreover, it is possible to find an integer k > 0 and
a binary prefix encoding of words from Ak such that the mean code word length
per one character of source alphabet is arbitrarily near to the entropy H(Z).

The fundamental theorem on source coding holds also for more general
stationary sources Z (the proof is more complicated). The importance of this
theorem is in the fact that the source entropy is the limit value of the average
length per one source character of optimally binary encoded source text.

Here we can see that the notion of source entropy was suitably and pur-
posefully defined and has its deep meaning. Remember that the entropy H(Z)
stands in the formula (4.16) without any conversion coefficient (resp. with co-
efficient 1) which is the consequence of felicitous choosing the number 2 for the
basis of logarithm in Shannon’s formula of information and Shannon – Hartley
formula for entropy.

As we have shown natural language cannot be considered to be an inde-
pendent source, its entropy is much less than the entropy of the first character
H1 = −

∑

i pi log2(pi). Here, the principle of fundamental source coding the-
orem can be applied – in order to obtain a shorter encoded message, we have
to encode words of source text instead of single characters. Here described
principles are the fundamentals for many compression methods.

4.7 Error detecting codes

In this section, we will study natural n-ary block codes with a code alphabet
having n characters. This codes are models for real situation. In the place of
the code alphabet in most cases the set of computer keyboard characters, or
decimal characters 0 – 9, or any other finite set of symbols can be used.

Human factor is often present in processing natural texts or numbers, and
it is the source of many errors. Our next problem is how to design a code
capable to find out that a single error, (or at most a given number of errors)
have occurred after transmission.

We have several data from Anglo Saxon literature about percentage of errors
arising by typing texts and numbers on computer keyboard.

4.7. ERROR DETECTING CODES 83

• Simple typing error a→ b 79%

• Neighbour transposition ab→ ba 10.2%

• Jump transposition abc→ cba 0.8%

• Twin error aa→ bb 0.6%

• Phonetic error X0→ 1X 0.5%

• Other errors 8.9%

We can see that the two most frequent human errors are the simple error
and the neighbour transposition.

The phonetic error is probably an English speciality, and the cause of it is
probably the little difference between English numerals (e. g., fourteen – forty,
fifteen – fifty etc.,).

The reader can wonder why drop character or add character errors are not
mentioned. The answer is that we are studying block codes, and the two just
mentioned errors change the word length so that they are immediately visible.

If the code alphabet B has n characters then the number of all words of B
of the length k is nk – this is the largest possible number of code words of n-ary
block code of the length k. The only way how to detect an error in a received
message is following: To use only a part of all nk possible words for the code
words, the others are claimed as non code words. If the received word is a non
code word we know that an error occurred in the received word.

Two problems can arise when designing such a code. The first one is how
to choose the set of words in order to ensure that a single error (or at most
specified number of errors) makes a non code word from arbitrary code word.
The second problem is how to find out quickly whether the received word is
a code word or a non code word.

First, we restrict ourselves to typing errors. It proves useful to introduce
a function expressing the difference between a pair of arbitrary words on the set
Bn ×Bn of all ordered pairs of words.

We would like that this function has properties similar to the properties of
the distance between points in a plane or a space.

84 CHAPTER 4. CODING THEORY

Definition 4.5. A real function d defined on Cartesian product V ×V is called
metric on V , if it holds:

1. For every u, v ∈ V d(u, v) ≥ 0 with equality if and only if u = v. (4.18)

2. For every u, v ∈ V d(u, v) = d(v, u). (4.19)

3. If u, v, w ∈ V , then d(u,w) ≤ d(u, v) + d(v, w). (4.20)

The inequality (4.20) is called triangle inequality.

Definition 4.6. The Hamming distance d(v,w) of two words v = v1v2 . . . vn,
w = w1w1 . . . wn is the number of places in which v and w differs, i. e.,

d(v,w) =
∣
∣{i | vi 6= wi, i = 1, 2, . . . , n}

∣
∣.

It is easy to show that the Hamming distance has all properties of metric,
that is why it is sometimes called also Hamming metric.

Definition 4.7. The minimum distance ∆(K) of a block code (K) is the
minimum of distances of all pairs of different code words from K.

∆(K) = min{d(a,b) | a,b ∈ K, a 6= b}. (4.21)

We say that the code K detects t-tuple simple errors if for every code word
u ∈ K and every word w such that 0 < d(u,w) ≤ t the word w is a non code
word.

We say that we have detected an error after receiving a non code word.
Pleas note that a block code K with the minimum distance ∆(K) = d detects
(d− 1)-tuple simple errors.

Example 4.6 (Two-out-of-five code). The number of ways how to choose two
elements out of five ones is

(
5
2

)
= 10. This fact can be used for encoding decimal

digits. This code was used by US Telecommunication, another system by U.S.
Post Office. The IBM 7070, IBM 7072, and IBM 7074 computers used this code
to represent each of the ten decimal digits in a machine word.

4.7. ERROR DETECTING CODES 85

Several two-out-of-five code systems

Digit Telecommunication IBM POSTNET
01236 01236 74210

0 01100 01100 11000
1 11000 11000 00011
2 10100 10100 00101
3 10010 10010 00110
4 01010 01010 01001
5 00110 00110 01010
6 10001 10001 01100
7 01001 01001 10001
8 00101 00101 10010
9 00011 00011 10100

The decoding can be made easily by adding weights1 (in the table the second
row from above) corresponding to code word characters 1 except source digit 0.

Two-out-of-five code detects one simple error – when changing arbitrary 0
to 1 the result is the word with three characters 1, changing 1 to 0 leads to the
word with only one 1 – both resulting words are non code words. However, the
Hamming distance of code words 11000 and 10100 is equal to 2 which implies
that the two-out-of-five code cannot detect all 2-tuple simple errors.

Example 4.7. 8-bit even-parity code is an 8-bit code where the first 7 bits
create an arbitrary 7-bit code (with 27 = 128 code words) and where the last
bit is added such that the number of ones in every code word is even. The even-
parity code detects one simple error, its minimal distance is 2. The principle
of parity bit was frequently used by transmissions and in some applications is
used till now.

Example 4.8. Doubling code. The doubling code is a block code of even
length in which every character stands in every code word twice. The binary
doubling code of the length 6 has 8 code words:

000000 000011 001100 001111 110000 110011 111100 111111

The minimum distance of doubling code is 2, it detects one simple error.

1The weights for IBM are 01236.
The decoding of code word 00011 is 0.0 + 1.0 + 2.0 + 3.1 + 6.1 = 9.

86 CHAPTER 4. CODING THEORY

Example 4.9. Repeating code. The principle of repeating code is several-
fold repeating of the same character. Codewords are only the words with all
characters equal – e. g. 11111, 22222, . . . , 99999, 00000. The minimum distance
of the repeating code K of the length is ∆K = n and that is why it detects
(n−1)-tuple simple errors. Note that we are able to restore a transmitted word
provided that we have a repeating code of the length 5 and that at most 2 errors
occurred. After receiving 10191, we know that the word 11111 was transmitted
assuming that at most two errors occurred.

Example 4.10. UIC railway car number is a unique 12 digit number for
each car containing various information about the car2 in the form

X X XX X XXX XXX X

The last digit is the check digit.
Let us have a railway car number

a1a2a3a4a5a6a7a8a9a10a11a12

The check digit a12 is calculated so that the sum of all digits

2a1 a2 2a3 a4 2a5 a6 2a7 a8 2a9 a10 2a11 a12

is divisible by 10. By another words: Multiply the digits 1 to 11 alternately by
2 and 1 and add the digits of the results. Subtract the last digit of the resulting
number from 10 and take the last digit of what comes out: this is the check
digit.

The digits on odd and even positions are processed differently – the designers
evidently made efforts to detect at least some of neighbour transposition errors.

Let C, D are the two neighbouring digits, let C be on an odd position.
Denote δ(Y) the sum of digits of the number 2Y for Y = 0, 1, . . . , 9. Then

δ(Y) =

{

2Y if Y ≤ 4

2Y − 9 if Y > 4

For what values of digits C, D the check digit remains unchanged after their
neighbour transposition?

2The specification of the meaning can be found at unofficial source
http://www.railfaneurope.net/misc/uicnum.html.

4.8. ELEMENTARY ERROR DETECTION METHODS 87

The sum δ(C) + D has to give the same remainder by integer division by
10 as δ(D) + C in order to retain the check digit unchanged. Therefore, their
difference has to be divisible by 10.

δ(C) +D − δ(D)− C =

=

2C +D − 2D − C = C −D if C ≤ 4 and D ≤ 4

2C − 9 +D − 2D − C = C −D − 9 if C ≥ 5 and D ≤ 4

2C +D − 2D + 9− C = C −D + 9 if C ≤ 4 and D ≥ 5

2C + 9 +D − 2D − 9− C = C −D if C ≥ 5 and D ≥ 5

In the first and in the fourth case, the difference C − D is divisible by 10 if
and only if C = D, which implies, that the code can detect the neighbour
transposition error of every pair of digits provided both are less than 5, or both
are greater than 4.
In the second case, if C ≥ 5 and D ≤ 4 then 1 ≤ (C −D) ≤ 9. The expression
δ(C) +D− δ(D)−C equals to (C −D)− 9 in this case. The last expression is
divisible by 10 if and only if C −D = 9, what can happen only for C = 9 and
D = 0.
In the third case, if C ≤ 4 and D ≥ 5 then 0− 9 = −9 ≤ (C−D) ≤ 4− 5 = −1.
The expression δ(C)+D− δ(D)−C equals to (C−D)+9 in this case. The last
expression is divisible by 10 only if C − D = −9, from what it follows C = 0
and D = 9. We see can that the equation

δ(C) +D − δ(D)− C ≡ 0 mod 10

has only two solutions, namely (C,D) = (0, 9) and (C,D) = (9, 0).

The UIC railway car number detects one simple error or one neighbour
transposition provided that the transposed pair is different from (0, 9) and (9, 0).
The designers did not succeed in constructing a code detecting all neighbour
transpositions.

4.8 Elementary error detection methods

This and the the section 4.9 will be devoted to error detecting methods in natural
decimal block codes of the length n. The code alphabet of these codes is the set
{1, 2, 3, 4, 5, 6, 7, 8, 9, 0}. The principle of these methods is that the first n − 1
digits of code word a = a1a2 . . . an−1an can be arbitrary (n− 1)-tuple of digits

88 CHAPTER 4. CODING THEORY

(they are intended to carry information) and the last digit an is so called check
digit satisfying so called check equation:

f(a1, a2, . . . , an) = c , (4.22)

where f is an appropriate function. We will search for such a function f for
which it holds:
If the word a′ = a′1a

′
2 . . . a

′
n−1a

′
n originated from the word a = a1a2 . . . an−1an

by one simple error or one neighbour transposition then f(a) 6= f(a′).

4.8.1 Codes with check equation mod 10

The check number an for decimal codes is calculated from the equation:

an ≡ −
n−1∑

i=1

wi.ai mod 10 ,

where wi are fixed preselected numbers, 0 ≤ wi ≤ 9. This approach can be
slightly generalized that the code words are words a = a1a2 . . . an−1an satisfying
the following check equation:

n∑

i=1

wi.ai ≡ c mod 10 . (4.23)

After replacing the digit aj by a′j in the code word a = a1a2 . . . an−1an the left
side of check equation 4.23 will be equal to

n∑

i=1

wi.ai + wj .a
′
j − wj .aj ≡ c+ wj .(a

′
j − aj) mod 10 .

The right side of equation 4.23 remains unchanged and the corresponding code
cannot detect this simple error if

wj .(a
′
j − aj) ≡ 0 mod 10 .

The last equation has unique solution a′j = aj if and only if wj and 10 are
relatively prime. Coefficients wi can be equal to one of numbers 1, 3, 7 and 9.

Try to find out whether the code with check equation (4.23) can detect
neighbour transpositions. The code cannot detect the neighbour transposition
of digits x, y on places i, i+ 1 if and only if

wi.y + wi+1.x− wi.x− wi+1.y ≡ 0 mod 10

4.8. ELEMENTARY ERROR DETECTION METHODS 89

wi.(y − x)− wi+1.(y − x) ≡ 0 mod 10

(wi − wi+1)(y − x) ≡ 0 mod 10

It is necessary for detection of neighbour transposition of x and y that the last
equation has the only solution x = y. This happens if and only if the numbers
(wi − wi+1) and 10 are relatively prime. But, as we have shown above, the
coefficients wi and wi+1 have to be elements of the set {1, 3, 7, 9} and that is
why (wi − wi+1) is always even.

Theorem 4.5. Let K be a decimal block code of the length n with check equation
(4.23). The code K detects all single simple errors if and only if all wi are
relatively prime to 10, i. e., if wi ∈ {1, 3, 7, 9}. No decimal block code of the
length n with check equation (4.23) detects all single simple error and at the
same time all single neighbour transpositions.

Example 4.11. EAN European Article Number is a 13 digit decimal number
used worldwide for unique marking of retail goods. EAN-13 code is placed
as a bar code on packages of goods. It allows scanning by optical scanners
and thus reduces the amount of work with stock recording, billing and further
manipulation with goods.

First 12 digits a1, . . . , a12 of EAN code carry information, the digit a13 is
the check digit fulfilling the equation:

a13 ≡ −(1.a1 + 3.a2 + 1.a3 + 3.a4 + · · ·+ 1.a11 + 3.a12) mod 10 .

EAN code detects one simple error. The EAN code cannot detect the neighbour
transposition for a pair x, y subsequent digits if

(x + 3y)− (3x+ y) ≡ 0 mod 10

(2y − 2x) ≡ 0 mod 10

2.(y − x) ≡ 0 mod 10

The last equation has the following solutions (x, y):

(0, 0), (0, 5), (1, 1), (1, 6), (2, 2), (2, 7), (3, 3), (3, 8), (4, 4), (4, 9),

(5, 5), (5, 0), (6, 6), (6, 1), (7, 7), (7, 2), (8, 8), (8, 3), (9, 9), (9, 4)

The EAN code cannot detect the neighbour transposition for the following ten
ordered pairs of digits:

(0, 5), (1, 6), (2, 7), (3, 8), (4, 9),

90 CHAPTER 4. CODING THEORY

(5, 0), (6, 1), (7, 2), (8, 3), (9, 4)

EAN code with 10 undetectable instances of neighbour transpositions is
much worse then UIC railway car number which cannot detect only two neigh-
bour transpositions of pairs (0, 9) and (9, 0).

4.8.2 Checking mod 11

These codes work with the code alphabet B ∪ {X} where
B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0} and where the digit X expresses the number 10.
Every code word a = a1a2 . . . an−1an of the length n has the first n − 1 digits
the elements of the alphabet B, and the last digit an−1 ∈ B ∪ {X} is
calculated from the equation:

n∑

i=1

wi.ai ≡ c mod 11 , where 0 < wi ≤ 10 for i = 1, 2, . . . , n . (4.24)

Similarly, as in the case of check equation mod 10, we show that the code with
checking mod 11 detects one simple error if and only if the equation

wj .(a
′
j − aj) ≡ 0 mod 11

has the only solution a′j = aj and this happens if and only if wj and 11 are
relatively prime – it suffices that wj 6= 0.
The code with checking mod 11 detects all neighbour transpositions on word
positions i, i+ 1 if and only if the equation

(wi − wi+1).(y − x) ≡ 0 mod 11

is fulfilled only by such pairs of digits (x, y) for which x = y.
In conclusion, let us remark that simple error detecting property and transpo-
sition error detecting property will not be lost if we allow all characters of code
words from alphabet B ∪ {X}.

Example 4.12. ISBN code – The International Standard Book Number is
a 10 digit number assigned to every officially issued book. The first four digits
a1a2a3a4 of ISBN number define the country and the publishing company, the
following five digits a5a6a7a8a9 specify the number of the book in the frame of
its publisher and the last digit a10 is the check digit defined by the equation:

a10 ≡
9∑

i=1

i.ai mod 11 .

4.8. ELEMENTARY ERROR DETECTION METHODS 91

The characters a1 till a9 are decimal digits – elements of alphabet B =
{0, 1, . . . , 9}, the character a10 is element of alphabet A ∪ {X} where X repre-
sents the value 10.
The last equation is equivalent with equation

10∑

i=1

i.ai ≡ 0 mod 11 ,

since −a10 ≡ −a10 + 11.a10 ≡ 10.a10 mod 11. If a10 = 10, the character
X is printed on the place of check digit. This is a disadvantage because the
alphabet of ISBN code has in fact 11 elements but the character X is used
only seldom. ISBN code detects all single simple errors and all single neighbour
transpositions.

Definition 4.8. The geometric code mod 11 is a block code of the length n
with characters from alphabet B ∪ {X} with check equation (4.24) in which

wi = 2i mod 11 for i = 1, 2, . . . , n .

Example 4.13. Bank account numbers of Slovak banks. The bank
account number is a 10 digit decimal number

a0, a1, a2, a3, a4, a5, a6, a7, a8, a9.

The meaning of single positions is not specified. A valid account number has to
fulfill the check equation:

0 =

(
9∑

i=0

2i.ai

)

mod 11 = (1.a0+2.a1+4.a2+8.a3+· · ·+512.a9) mod 11 =

= (a0 + 2a1 + 4a2 + 8a3 + 5a4 + 10a5 + 9a6 + 7a7 + 3a8 + 6a9) mod 11 .

We can see that the geometrical code mod 11 is used here. In order to avoid the
cases when a9 = 10 simply leave out the numbers a0a1 . . . a8 leading to check
digit a9 = 10.
The bank account number code detects all single simple errors, all single
neighbour transpositions, but moreover all single transpositions on arbitrary
positions of bank account number.

92 CHAPTER 4. CODING THEORY

Example 4.14. Slovak personal identification number. The internet site
www.minv.sk/vediet/rc.html specifies Slovak personal identification numbers.
The personal identification number is a 10 digit decimal number in the form
Y YMMDDKKKC, where Y YMMDD specifies the birthday date of a person,
KKK is a distinctive suffix for persons having the same birthday date and C
is the check digit. The check digit has to satisfy the condition that the decimal
number Y YMMDDKKKC is divisible by 11.
Let us have a 10 digit decimal number a0, a1, a2, a3, a4, a5, a6, a7, a8, a9. Let us
study which errors can our code detect. The condition of divisibility by 11 leads
to the following check equation:

9∑

i=0

10i.ai ≡ 0 mod 11 .

If i is even, i. e., i = 2k, then 10i = 102k = 100k = (99 + 1)k.
By the binomial theorem we can write:

10i = (99 + 1)k =

(
k

k

)

99k +

(
k

k − 1

)

99k−1 + · · ·+

(
k

1

)

991 + 1 . (4.25)

Since 99 is divisible by 11, the last expression implies:

10i ≡ 1 mod 11 for i even.

If i is odd, i. e., i = 2k + 1, then 10i = 102k+1 = 10.100k = 10.(99 + 1)k.
Utilizing (4.25) we can write

10i = 10.(99 + 1)k = 10.

[(
k

k

)

99k +

(
k

k − 1

)

99k−1 + · · ·+

(
k

1

)

991 + 1

]

=

= 10.

(
k

k

)

99k + 10.

(
k

k − 1

)

99k−1 + · · ·+ 10.

(
k

1

)

991 + 10 .

From the last expression we have:

10i ≡ 10 mod 11 for i odd.

The check equation of 10 digit personal identification number is equivalent with:

a0 +10a1 + a2 +10a3 + a4 +10a5 + a6 +10a7 + a8 +10a9 ≡ 0 mod 11 (4.26)

4.9. CODES WITH CHECK DIGIT OVER A GROUP* 93

from where we can see that the code of personal identification numbers detects
all single simple errors and all single neighbour transpositions3.

The reader may ask what to do when the check digit C is equal to 10 for
some Y YMMDDXXX . In such cases the distinctive suffix XXX is skipped
and the next one is used.

4.9 Codes with check digit over a group*

In this section we will be making efforts to find a decimal code with one check
digit capable to detect one error of the two types: a simple error or a neighbour
transposition.

Codes with code alphabet B = {0, 1, . . . , 9} and with check equation mod 10
detected single simple error if and only if the mapping δ : B → B defined by
formula δ(ai) = (wi.ai mod 10) was an one to one mapping – a permutation
of the set B. The assignment δ(x) defined as the sum of digits of 2.x used in
UIC railway car encoding is a permutation of the set B of decimal digits. UIC
railway car code is, till now, the most successful decimal code from the point
of view of detecting one simple error and one neighbour transposition at the
same time. We have also seen that the decimal code with check equation mod
10 is not able to detect one single error and at the same time one neighbour
transposition – see theorem 4.5, 89.

This suggests an idea to replace summands wiai by permutations δ(ai) in
check equation (4.23). The new check equation is in the form

n∑

i=1

δ(ai) ≡ c mod 10 (4.27)

Example 4.15. UIC railway car number is in fact a code with permutations

δ1 = δ3 = · · · = δ11 :=

(
0 1 2 3 4 5 6 7 8 9

0 2 4 6 8 1 3 5 7 9

)

δ2 = δ4 = · · · = δ12 :=

(
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

)

3The reader can easily verify that the check equation (4.26) is equivalent also with the
equation:

a0 − a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8 − a9 ≡ 0 mod 11.

94 CHAPTER 4. CODING THEORY

and with the check equation

12∑

i=1

δi(ai) ≡ 0 mod 10 .

Example 4.16. German postal money-order number is a 10 digit decimal
code a1a2 . . . a10 with check digit a10 and with the check equation

10∑

i=1

δi(ai) ≡ 0 mod 10 ,

where

δ1 = δ4 = δ7 =

(
0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 0

)

δ2 = δ5 = δ8 =

(
0 1 2 3 4 5 6 7 8 9

2 4 6 8 0 1 3 5 7 9

)

δ3 = δ6 = δ9 =

(
0 1 2 3 4 5 6 7 8 9

3 6 9 1 4 7 0 2 5 8

)

δ10 =

(
0 1 2 3 4 5 6 7 8 9

0 9 8 7 6 5 4 3 2 1

)

None of mentioned codes detects both simple error and neighbour trans-
position. Therefore – as the further generalization – we replace the group of
residue classes4 mod m by another group G = (A, ∗). The check equation will
be formulated as

n∏

i=1

δi(ai) = c . (4.28)

The multiplicative form of group operation ∗ indicates that the group G need
not be commutative.

Definition 4.9. Let A be an alphabet, let G = (A, ∗) be a group. Let
δ1, δ2, . . . , δn, are permutations of A. Then the code defined by check equation
(4.28) is called code with check digit over the group G.

Permutations are one to one mappings. Therefore, for every permutation δ
of A there exits unique inverse permutation δ−1 of A for which it holds

δ(a) = x if and only if δ−1(x) = a .

4The check equation (4.23) can be equivalently formulated as

δ1(a1) ⊕ δ2(a2) ⊕ · · · ⊕ δn(an) = c,

where operation x ⊕ y = (x + y) mod (10) is a group operation on the set B = {0, 1, . . . , 9}
– the structure (B,⊕) is a group called group of residue classes mod 10.

4.9. CODES WITH CHECK DIGIT OVER A GROUP* 95

Having two permutations δi, δj of A, we can define a new permutation by the
formula ∀a ∈ A a 7→ δi

(
δj(a)

)
. The new permutation will be denoted by δi ◦ δj

and thus:

δi ◦ δj(a) = δi
(
δj(a)

)
∀a ∈ A .

Theorem 4.6. A code K with check digit of the group G = (A, ∗) detects
neighbour transposition on positions i and i+ 1 if and only if:

x ∗ δi+1 ◦ δ
−1
i (y) 6= y ∗ δi+1 ◦ δ

−1
i (x) (4.29)

for arbitrary x ∈ A, y ∈ A, x 6= y.

For an Abel (i. e., commutative) group G = (A,+) the equation (4.29) can
be rewritten in the form x + δi+1 ◦ δ

−1
i (y) 6= y + δi+1 ◦ δ

−1
i (x), from where we

have the following corollary:
Corollary. A code K with check digit over an Abel group G = (A,+) detects
neighbour transposition of arbitrary digits on positions i, i+ 1 if and only if it
holds for arbitrary x, y ∈ A, x 6= y:

x− δi+1 ◦ δ
−1
i (x) 6= y − δi+1 ◦ δ

−1
i (y). (4.30)

Proof. Let the code K detects neighbour transposition of arbitrary digits on
positions i, i+ 1. Then for arbitrary ai, ai+1 such that ai 6= ai+1 it holds:

δi(ai) ∗ δi+1(ai+1) 6= δi(ai+1) ∗ δi+1(ai) (4.31)

For arbitrary x ∈ A there exists ai ∈ A such that ai = δ−1
i (x). Similarly for

arbitrary y ∈ A there exists ai+1 ∈ A such that ai+1 = δ−1
i (y). Substitute x for

δi(ai) and y for δi(ai+1), then δ−1
i (x) for ai and δ−1

i (y) for ai+1 in (4.31) . We
get:

x ∗ δi+1(ai+1) 6= y ∗ δi+1(ai)

x ∗ δi+1

(
δ−1
i (y)

)
6= y ∗ δi+1

(
δ−1
i (x)

)

x ∗ δi+1 ◦ δ
−1
i (y) 6= y ∗ δi+1 ◦ δ

−1
i (x)

and hence (4.29) holds.
Let (4.29) holds for all x, y ∈ A, x 6= y. Then (4.29) holds also for x = δi(ai),

y = δi(ai+1), where ai, ai+1 ∈ A, ai 6= ai+1.

δi(ai) ∗ δi+1 ◦ δ
−1
i (δi(ai+1)) 6= δi(ai+1) ∗ δi+1 ◦ δ

−1
i (δi(ai))

96 CHAPTER 4. CODING THEORY

δi(ai) ∗ δi+1

(

δ−1
i

(
δi(ai+1)

)

︸ ︷︷ ︸

ai+1

)

6= δi(ai+1) ∗ δi+1

(

δ−1
i

(
δi(ai)

)

︸ ︷︷ ︸

ai

)

δi(ai) ∗ δi+1(ai+1) 6= δi(ai+1) ∗ δi+1(ai) ,

what implies that the code K detects neighbour transposition of arbitrary digits
on positions i, i+ 1. �

Note the formula (4.30). It says that the assignment x 7→
(
x−δi+1 ◦δ

−1
i (x)

)

is one to one mapping – permutation.

Definition 4.10. A permutation δ of a (multiplicative) group G = (A, ∗) is
called complete mapping, if the mapping defined by the formula

∀x ∈ A x 7→ η(x) = x ∗ δ(x)

is also a permutation.
A permutation δ of a (additive) group G = (A,+) is called complete mapping,
if the mapping defined by the formula

∀x ∈ A x 7→ η(x) = x+ δ(x)

is also a permutation.

Theorem 4.7. A code K with check digit over an Abel group G = (A,+) detects
one simple error and one neighbour transposition if and only if there exists a
complete mapping of group G.

Proof. Define the mapping µ : A→ A by the formula µ(x) = −x. The mapping
µ is a bijection – it is a permutation. The mapping x 7→ −δ(x) = µ ◦ δ(x) is
again a permutation of set A for arbitrary permutation δ of A .

Let the code K detects neighbour transpositions. Then the mapping x 7→
(
x− δi+1 ◦ δ

−1
i (x)

)
is a permutation by corollary of the theorem 4.6. But

x− δi+1 ◦ δ
−1
i (x) = x+ µ ◦ δi+1 ◦ δ

−1
i (x)

︸ ︷︷ ︸

δ(x)

= x+ δ(x)

The permutation δ defined by the formula δ = µ ◦ δi+1 ◦ δ
−1
i is the required

complete mapping of G.

Let δ be a complete mapping of group G. Define:

δi = (µ ◦ δ)i. (4.32)

4.9. CODES WITH CHECK DIGIT OVER A GROUP* 97

Then

x− δi+1 ◦ δ
−1
i (x) = x− (µ ◦ δ)i+1 ◦ (µ ◦ δ)−i(x) = x− (µ ◦ δ)(x) = x+ δ(x),

what implies that x − δi+1 ◦ δ
−1
i (x) is a permutation. By the corollary of the

theorem 4.6, the code with check digit over the group G with permutations δi
defined by (4.32) detects neighbour transpositions. �

Theorem 4.8. Let G = (A,+) be an Abel finite group. Then the following
assertions hold (see [11], 8.11 page. 63):

a) If G group of an odd order then identity is complete mapping of G.

b) A group G of order r = 2.m where m is an odd number has no compete
mapping.

c) Let G = (A,+) be an Abel group of the even order. A complete mapping
of G exists if an only if G contains at least two different involutions, i. e.,
such elements g ∈ A that g 6= 0, and g + g = 0

Proof. The proof of this theorem exceeds the frame of this publication. The
reader can find it in [11]. �

Let us have the alphabet A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let (A,⊕) be an
arbitrary Abel group (let ⊕ be an arbitrary binary operation on A such that
(A,⊕) is a commutative group). Since the order of group (A,⊕) is 10 = 2 × 5
there is no complete mapping of this group.

Corollary. There is no decimal code with check digit over an Abel group
G = (A,⊕) where A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} detecting simple errors and
neighbour transpositions.

The only chance for designing a decimal code capable to detect simple errors
and neighbour transpositions is to try a code with check digit over a non–
commutative group.

Definition 4.11. Dieder group Dn is a finite group of order 2.n of the form

{
1, a, a2, . . . , an−1, b, ab, a2.b, . . . , an−1b

}
,

where it holds

an = 1 (ai 6= 1 for i = 1, 2, . . . , n− 1)

98 CHAPTER 4. CODING THEORY

b2 = 1 (b 6= 1)

b.a = an−1.b

Dieder group Dn will be denoted

Dn =
〈
a, b

∣
∣ an = 1 = b2, ba = an−1b

〉

Dieder group Dn can be interpreted as a group of symmetries of the regular
n-sided polygon – the element a expresses rotation around the center by angle
2π/n, the element b expresses axial symmetry. Let us have D3, let (ABC) is
a regular triangle. Then 1 = (ABC), a = (CAB), a2 = (BCA), b = (ACB),
ab = (BAC), a2b = (CBA).

Example 4.17. Dieder group D3 =
〈
a, b

∣
∣ a3 = 1 = b2, ba = a2b

〉
. The

elements of D3 can be assigned to integers from 1 to 6:

1 a a2 b ab a2b
1 2 3 4 5 6

Denote by ⊕ the corresponding group operation on the set {1, 2, . . . , 6}. Then
we calculate

2⊗ 3 = a.a2 = a3 = 1

3⊗ 6 = a2.a2b = a4b = a3.ab = 1.ab = ab = 5

6⊗ 3 = a2b.a2 = ba.a2 = ba3 = b.1 = b = 4

4⊗ 5 = b.ab = ba.b = a2b.b = a2.b2 = a2.1 = a2 = 3

5⊗ 4 = ab.b = a.b2 = a.1 = a = 2

Theorem 4.9. Let Dn =
〈
a, b

∣
∣ an = 1 = b2, ba = an−1b

〉
be a Dieder group

of an odd degree n, n ≥ 3. Define a permutation δ : Dn → Dn by the formula:

δ(ai) = an−1−i a δ(aib) = aib ∀i = 0, 1, 2, . . . , n− 1 . (4.33)

Then it holds for the permutation δ:

x.δ(y) 6= y.δ(x) ∀x, y ∈ Dn such that x 6= y . (4.34)

4.9. CODES WITH CHECK DIGIT OVER A GROUP* 99

Proof. Let us realize one fact before proving the theorem. It holds by definition
of Dieder group that b.a = an−1b. Since an−1.a = 1, it holds an−1 = a−1, and
that is why it holds ba = a−1b. Let k be an arbitrary natural number. Then
b.ak = a−1bak−1 = a−2bak−2 = · · · = a−kb.

For arbitrary integer number it holds:

b.ak = a−kb . (4.35)

Now return to the proof of theorem. Let δ be defined by (4.33). It is easy
to seen that δ is a permutation. We want to prove (4.34). We will distinguish
three cases:
1. case:
Let x = ai, y = aj , where i 6= j, let 0 ≤ i, j ≤ n− 1.
Suppose that x.δ(y) = y.δ(x) then ai.an−1−j = aj.an−1−i which implies
a2i−2j = a2(i−j) = 1. The number 2(i − j) has to be divisible by an odd
number n, otherwise 2(i − j) = kn + r, where 1 ≤ r ≤ n − 1, and then
a2(i−j) = akn+r = aknar = 1.ar 6= 1. If an odd n divides 2(i− j), the number
(i − j) has to be divisible by n, from which it follows that (i− j) = 0 because
0 ≤ i, j ≤ n− 1.

2. case:
Let x = ai, y = ajb, 0 ≤ i, j ≤ n− 1.
Suppose x.δ(y) = y.δ(x), i. e., aiajb = ajban−1−i. Using (4.35) we have
ai+jb = aj .ai+1b, from where we get step by step ai+j = ai+j+1, 1 = a.
However, a 6= 1 for ≥ 3 in corresponding Dieder group Dn for n ≥ 3.

3. case:
Let x = aib, y = ajb, 0 ≤ i, j ≤ n− 1.
Let x.δ(y) = y.δ(x) which means in this case aib.ajb = ajbaib. Using (4.35) we
have aibb.a−j = ajbba−i. Since b.b = b2 = 1, the last equation can be rewritten
as ai−j = aj−i, and thus a2(i−j) = 1. In the same way as in the 1. case we can
show that this implies i = j. �

Theorem 4.10. Let Dn =
〈
a, b

∣
∣ an = 1 = b2, ba = an−1b

〉
be a Dieder group

of an odd order n, n ≥ 3. Let δ : Dn → Dn be the permutation defined by the
formula (4.33). Define

δi = δi for i = 1, 2, . . . ,m.

Then the block code of the length m with check digit over the group Dn detects
simple errors and neighbour transpositions.

100 CHAPTER 4. CODING THEORY

Proof. By contradiction. It suffices to prove (by the theorem 4.6) that it holds
for code characters x, y such that x 6= y

x ∗ δi+1 ◦ δ
−1
i (y) 6= y ∗ δi+1 ◦ δ

−1
i (x)

Let for some x 6= y equality in the last formula holds. Using substitutions
δi = δi, δi+1 = δi+1 we get:

x ∗ δi+1 ◦ δ−i(y) = y ∗ δi+1 ◦ δi(x)

x ∗ δ(y) = y ∗ δ(x),

what contradicts with the property (4.34) of permutation δ. �

Remark. Definition 4.33 can be generalized by the following way: Define
δ : Dn → Dn by the formula

δ(ai) = ac−i+d and δ(aib) = ai−c+db ∀i = 1, 2, . . . , n− 1 (4.36)

The permutation δ defined in the definition (4.33) is a special case of that defined

in (4.36), namely for c = d =
n− 1

2
.

Example 4.18. Dieder group D5 =
〈
a, b

∣
∣ a5 = 1 = b2, ba = a4b

〉
. The

elements of D5 can be assigned to decimal characters as follows:

1 a a2 a3 a4 b ab a2b a3b a4b
0 1 2 3 4 5 6 7 8 9

The following scheme can be used for group operation i ∗ j:

i ∗ j 0 ≤ j ≤ 4 5 ≤ j ≤ 9

0 ≤ i ≤ 4 (i+ j) mod 5 5 + [(i+ j) mod 5]

5 ≤ i ≤ 9 5 + [(i− j) mod 5] (i− j) mod 5

The corresponding table of operation ∗ is:

4.10. GENERAL THEORY OF ERROR CORRECTING CODES 101

j
∗ 0 1 2 3 4 5 6 7 8 9

i 0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 0 6 7 8 9 5
2 2 3 4 0 1 7 8 9 5 6
3 3 4 0 1 2 8 9 5 6 7
4 4 0 1 2 3 9 5 6 7 8
5 5 9 8 7 6 0 4 3 2 1
6 6 5 9 8 7 1 0 4 3 2
7 7 6 5 9 8 2 1 0 4 3
8 8 7 6 5 9 3 2 1 0 4
9 9 8 7 6 5 4 3 2 1 0

4.10 General theory of error correcting codes

Let us have an alphabet A = {a1, a2, . . . , ar} with r characters. In this section
we will explore block codes K of the length n (i. e., subsets of the type K ⊂ An)
from the point of view of general possibilities of detecting and correcting t simple
errors.

Till the end of this chapter we will use the notation d(v,w) for the Hamming
distance of two words v and w, that was defined in definition 4.6 (page 84) as
the number of places in which v and w differ. By the definition 4.7 (page 84),
the minimum distance ∆K of a block code K is minimum of Hamming distances
of all pairs of different words of the code K.

Remark. Maximum of distances of two words from An is n – namely in the
case when corresponding words differ in all positions.

Theorem 4.11. The Hamming distance is a metric on An, i. e., it holds:

d(a,b) ≥ 0 ; d(a,b) = 0 ⇐⇒ a = b

d(a,b) = d(b,a)

d(a,b) ≤ d(a, c) + d(c,b)

Hence (An, d) is a metric space.

Proof. The simple straightforward proof is left to the reader. �

Definition 4.12. We will say that a code K detects t-tuple simple errors
if the result of replacing arbitrary at least 1 and at most t characters of any

102 CHAPTER 4. CODING THEORY

code word c by different characters is a non code word. We say that we have
detected an error after receiving a non code word.

Definition 4.13. A ball Bt(c) with center c ∈ An and radius t is the set

Bt(c) = {x | x ∈ An, d(x, c) ≤ t}.

The ball Bt(c) is the set of all such words which originated from the word c
by at most t simple errors.

Calculate how many words the ball Bt(c) contains provided |A| = r.
Let c = c1c2 . . . cn. The number of words v ∈ An with d(c,v) = is n.(r − 1) =
(
n

1

)

.(r−1), since we can obtain r−1 words that differ from c at every position

i, i = 1, 2, . . . , n.

To count the number of words which differ from c at k positions first choose

a subset {i1, i2, . . . ik} of k indices – there are

(
n

k

)

such subsets. Every character

at every position i1, i2, . . . ik can be replaced by r − 1 different characters what
leads to (r − 1)k different words. Thus the total number of words v ∈ An with

d(c,v) = k is

(
n

k

)

(r−1)k. The word c itself is also an element of the ball Bt(c)

and contributes to its cardinality by the number 1 =

(
n

0

)

.(r − 1)0. Therefore

the number of words in Bt(c) is

|Bt(c)| =
t∑

i=0

(
n

i

)

.(r − 1)i . (4.37)

The cardinality of the ball Bt(c) does not depend on the center word c – all
balls with the same radius t have the same cardinality (4.37).

Definition 4.14. We say that the code K corrects t simple errors if for
every word y which originated from a code word by at most t simple errors,
there exists an unique code word x such that d(x,y) ≤ t.

Note that if b ∈ Bt(c1) ∩ Bt(c2) then the word b could originated by at
most t simple errors from both words c1, c2. Hence if the code K corrects t
simple errors then the following formula

Bt(c1) ∩Bt(c2) = ∅ (4.38)

4.10. GENERAL THEORY OF ERROR CORRECTING CODES 103

has to hold for an arbitrary pair c1, c2 of two distinct code words.
The reverse assertion is also true. If (4.37) holds for an arbitrary pair of

code words of the code K then the code K corrects t simple errors.

Let a code K ⊆ An corrects t simple errors. Since |An| = rn, it follows from
formulas (4.37) and (4.38) that the number of code words |K| fulfils

t∑

i=0

(
n

i

)

.(r − 1)i . |K| ≤ rn . (4.39)

When designing a code which corrects t errors we try to utilize the whole set
(An, d). The ideal case would be if the system of balls covered the whole set
An, i. e., if (4.39) was equality. Such codes are called perfect.

Definition 4.15. We say that the code K ⊆ An is t-perfect code, if

∀a, b ∈ An, a 6= b Bt(a) ∩Bt(b) = ∅ ,
⋃

a∈K

Bt(a) = An .

While perfect codes are very efficient, they are very rare – most of codes are
not perfect.

Theorem 4.12. A code K corrects t simple errors if and only if

∆(K) ≥ 2t+ 1 , (4.40)

where ∆(K) is the minimum distance of the code K.

Proof. By contradiction. Let (4.40) holds.
Suppose that there are two words a ∈ K, b ∈ K such that Bt(a) ∩ Bt(b) 6= ∅,
let c ∈ Bt(a) ∩Bt(b). By triangle inequality we have

d(a,b) ≤ d(a, c)
︸ ︷︷ ︸

≤t

+ d(c,b)
︸ ︷︷ ︸

≤t

≤ 2t,

what contradicts with assumption that ∆K ≥ 2t+ 1.

Let the code K ⊆ An corrects t simple errors. Then for arbitrary a, b ∈ K
such that a 6= b it holds Bt(a) ∩ Bt(b) = ∅. Let d(a,b) = s ≤ 2t. Create the
following sequence of words

a0,a1,a2, . . . ,as (4.41)

104 CHAPTER 4. CODING THEORY

where a0 = a, and having defined ai we define ai+1 as follows: Compare step by
step the characters at the first, the second,. . . , n-th position of both words ai

and b until different characters are found on the position denoted by k. Create
the word ai+1 as the word ai in which the k-th character is substituted by k-th
character of the word b.

The sequence (4.41) represents one of several possible procedures of trans-
forming the word a into the word b by stepwise impact of simple errors.

Clearly as = b, d(a,ai) = i and d(ai,b) = s−i for i = 1, 2, . . . , s. Therefore,
d(a,at) = t, at ∈ Bt(a) and also d(at,b) = s − t ≤ 2t − t = t, and hence
at ∈ Bt(b), what contradicts with the assumption that Bt(a) ∩Bt(b) = ∅. �

Example 4.19. Suppose we have the alphabet A = {a1, a2, . . . , ar}. The
repeating code of the length k is the block code whose every code word consists
of k same characters, i. e., K = {a1a1 . . . a1, a2a2 . . . a2, . . . , arar . . . ar}. The
minimum distance of the code K is ∆K = k and such a code corrects t simple
errors for t < k/2. Specially for r = 2 (i. e., for the binary alphabet A)and k
odd, i. e., k = 2t+ 1 the repeating code is t-perfect.

Example 4.20. The minimum distance of the 8-bit-even-parity-code is 2 (see
example 4.7, page 85), that is why it does not correct even one simple error.

Example 4.21. Two dimensional parity check code. This is a binary
code. Information bits are written into a matrix of the type (p, q). Then the
even parity check bit is added to every row and to every column. Finally, the
even parity ”check character of check characters” is added. This code corrects
one simple error. Such error will change the parity of exactly one row i and
exactly one column j. Then the incorrect bit is in the position (i, j). The
example of one code word of the length 32 for p = 3, q = 7 follows:

101 0 ← row check digit
000 0
001 1
010 1
111 1
111 1
000 0

column check digits → 110 0 ← check digit of check digits

Suppose, we have a code K which corrects t errors and we have received
a word a. We need an instruction how to determine the transmitted word

4.10. GENERAL THEORY OF ERROR CORRECTING CODES 105

from the received word a provided at most t simple errors occurred during
transmission.

Definition 4.16. The decoding of code K (or code decoding of K) is an
arbitrary mapping δ with codomain K, whose domain D(δ) is a subset of the set
An, which contains as a subset the code K and for which it holds: for arbitrary
a ∈ K it holds δ(a) = a.

δ : D(δ)→ K, K ⊂ D(δ) ⊆ An, δ : D(δ)→ K , ∀a ∈ K δ(a) = a .

If D(δ) = An, we say that the decoding of the code K is complete decoding
of the code K, otherwise we say that δ is partial decoding of a code K.

Remark. Please distinguish between the terms ”decoding function” (or simple
”decoding”) which is used for inverse function of encoding K, while the term
”decoding of the code K” is a function which for some words a from An says
which word was probably transmitted if we received the word a.

Some codes allow to differentiate the characters of code words into characters
carrying an information and check characters. Check characters are fully
determined by information characters. Even-parity codes (example 4.7, page
85), UIC railway car number (example 4.10), EAN code (example 4.11) ISBN
code (example 4.12), Slovak personal identification number (example 4.14) are
examples of such codes with the last digit in the role of check digit.

If we know how the meanings of single positions of code words were defined,
we have no problem with distinguishing between information and check charac-
ters. The problem is how to make differentiation when we know only the set K
of code words. The following definition gives us the answer:

Definition 4.17. Let K ⊆ An be a block code of the length n. We say that
the code K has k information and n− k check characters, if there exists
an one–to–one mapping φ : Ak ↔ K. The mapping φ is called encoding of
information characters.

Example 4.22. The repeating block code of the length 5 with the alphabet
A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} has one information character and 4 check charac-
ters since the mapping φ defined by:

φ(0) = 00000 φ(1) = 11111 φ(2) = 22222 φ(3) = 33333 φ(4) = 44444
φ(5) = 55555 φ(6) = 66666 φ(7) = 77777 φ(8) = 88888 φ(9) = 99999

is an one–to–one mapping φ : A1 ↔ K.

106 CHAPTER 4. CODING THEORY

Example 4.23. The doubling code of the length 2n has n information charac-
ters and n check characters. The encoding of information characters φ : An ↔ K
is defined by the formula:

φ(a1a2 . . . an) = a1a1a2a2 . . . anan.

Example 4.24. The two-out-of-five-code (see example 4.6 page 84) has not
distinguished the information characters from the check ones. The number of
code words of this code is |K| = 10 and this number is not an integer power
of 2, therefore there cannot exist an one to one mapping φ : {0, 1}k → K.

In many examples we have seen that the check digit was the last digit of the
code word. Similarly we would like to have codes with k information and n− k
check characters in such a form that the first k characters of code words are
the information characters and n− k remaining are the check characters. Such
codes are called systematic.

Definition 4.18. A block code K is called systematic code with k information
characters and n − k check characters if for every word a1a2 . . . ak ∈ Ak there
exists exactly one code word a ∈ K such that

a = a1a2 . . . ak, ak+1 . . . an .

Example 4.25. The repeating code of the length n is a systematic code
with k = 1. The even parity code of the length 8 is a systematic code with k = 7.
UIC railway car number is a systematic code with k = 11.
Doubling code of the length 2n, greater than 2, is not systematic.

Theorem 4.13. Let K be a systematic code with k information characters
and n− k check characters, let ∆K be the the minimum distance of K. Then it
holds:

∆K ≤ n− k + 1 . (4.42)

Proof. Choose two words a = a1a2 . . . ak−1ak ∈ Ak, a = a1a2 . . . ak−1ak ∈ Ak

which differ only in the last k-th position. Since the code K is systematic, for
every word a, resp., a there exists exactly one code word b, resp., b such that
a is the prefix of b, resp. a is the prefix of b:

b = a1a2 . . . ak−1akak+1 . . . an ,

b = a1a2 . . . ak−1akak+1 . . . an .

4.11. ALGEBRAIC STRUCTURE 107

Since the words b, b have the same characters in k− 1 positions, they can have
at most n−(k−1) = n−k+1 different characters. Therefore d(b,b) ≤ n−k+1
and hence ∆K ≤ n− k + 1. �

Corollary A code K with k information and n−k check characters can correct

at most

[
n− k

2

]

errors (where [x] is the integral part of x).

Example 4.26. For the doubling code of the length n = 2t is k = t, n− k = t,
but the minimum distance of this code is 2 – this number is much lower for large t
then the upper estimation (4.42) which gives for this case ∆K ≤ 2t−t+1 = t+1.

Definition 4.19. LetK be a code with k information and n−k check characters.
The fraction

R =
k

n
(4.43)

is called information ratio.

Designers of error correcting codes want to protect the code against as large
number of errors as possible – this leads to increasing the number of check
digits – but the other natural requirement is to achieve as large information
ratio as possible. The mentioned aims are in contradiction. Moreover we can
see that adding check characters need not result in larger minimum distance of
code (see example 4.26).

4.11 Recapitulation of some

algebraic structures

Group (G, .) is a set G with a binary operation ”.” assigning to every two
elements a ∈ G, b ∈ G an element a.b (shortly only ab) such that it holds:

(i) ∀a, b ∈ G ab ∈ G

(ii) ∀a, b, c ∈ G (ab)c = a(bc) – associative law

(iii) ∃ 1 ∈ G ∀a ∈ G 1a = a1 = a – existence of a neutral element

(iv) ∀a ∈ G ∃a−1 ∈ G aa−1 = a−1a = 1 – existence of an inverse element

108 CHAPTER 4. CODING THEORY

The group G is commutative if it holds ∀a, b ∈ G ab = ba. Commutative
groups are also called Abel groups. In this case additive notation of group
binary operation is used, i. e., a + b instead of a.b and the neutral element is
denoted by 0. The inverse element to element a in the commutative group is
denoted by −a.

Field (T,+, .) is a set T containing at least two elements 0 and 1 together with
two binary operations ”+” and ”.” such that it holds:

(i) The set T with binary operation ”+” is a commutative group with neutral
element 0.

(ii) The set T − {0} with binary operation ”.” is a commutative group with
neutral element 1.

(iii) ∀a, b, c ∈ G a(b+ c) = ab+ ac – distributive law

Maybe the properties of fields are better visible if we rewrite (i), (ii), (iii),
of the definition of the field into single conditions:

Field is a set T containing at least two elements 0 and 1 together with two
binary operations ”+” and ”.” such that it holds:

(T1) ∀a, b ∈ T a+ b ∈ T , ab ∈ T .

(T2) ∀a, b, c ∈ T a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c – associative laws

(T3) ∀a, b ∈ T a+ b = b+ a, ab = ba – commutative laws

(T4) ∀a, b, c ∈ T a(b+ c) = ab+ ac – distributive law

(T5) ∀a ∈ T a+ 0 = a, a.1 = a

(T6) ∀a ∈ T ∃(−a) ∈ T a+ (−a) = 0

(T7) ∀a ∈ T , a 6= 0 ∃a−1 ∈ T a.a−1 = 1

Commutative ring with 1 is a set R containing at least two elements 0 ∈ R
and 1 ∈ R together with two operations + and ., in which (T1) till (T6) hold.

4.11. ALGEBRAIC STRUCTURE 109

Example 4.27. The set Z of all integers with operations ”+” and ”.” is
commutative ring with 1. However, the structure (Z,+, .) is not a field since
(T7) does not hold.

Factor ring modulo p. Let us have the set Zp = {0, 1, 2, . . . , p − 1}. Define
two binary operations ⊕, ⊗ on the set Zp:

a⊕ b = (a+ b) mod p a⊗ b = (ab) mod p,

where n mod p is the remainder after integer division of the number n by p. It
can be easily shown that for an arbitrary natural number p > 1 the structure
(Zp,⊕,⊗) is a commutative ring with 1, i. e., it fulfills conditions (T1) till (T6).

We will often write + and . instead of ⊕ and ⊗ – namely in situations where
no misunderstanding may happen.

Example 4.28. The ring Z6 has the following tables for operation ⊕ and ⊗:

⊕ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 5

⊗ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

By the above tables it holds 5 ⊗ 5 = 1, i. e., the inverse element to 5 is the
element 5. The elements 2, 3, 4 have no inverse element at all. The condition
(T7) does not hold in Z6, therefore Z6 is not a field.

For coding purposes such factor rings Zp are important, which are fields.
When is the ring Zp also a field? The following theorem gives the answer.

Theorem 4.14. Factor ring Zp is a field if and only if p is a prime number.

Proof. The reader can find an elementary proof of this theorem in the book [1].
�

110 CHAPTER 4. CODING THEORY

Linear space over the field F . Let (F,+, .) be a field. The linear space over
the field F is a set L with two binary operations: vector addition: L×L → L
denoted v + w, where v,w ∈ L, and scalar multiplication: F ×L → L denoted
t.v, where t ∈ F and v ∈ L, satisfying axioms below:

(L1) ∀u,v ∈ L a ∀t ∈ T u + v ∈ L , t.u ∈ L.

(L2) ∀u,v,w ∈ L u + (v + w) = (u + v) + w.

(L3) ∀u,v ∈ L u + b = b + u.

(L4) ∃o ∈ L such that ∀u ∈ L u + o = u

(L5) ∀u ∈ L ∃(−u) ∈ L such that u + (−u) = o

(L6) ∀u,v ∈ L a ∀t ∈ T t.(u + v) = t.u + t.v

(L7) ∀u ∈ L a ∀s, t ∈ T (s.t)u = s.(t.u)

(L8) ∀u ∈ L a ∀s, t ∈ T (s+ t)u = s.u + t.u

(L9) ∀u ∈ L 1.u = u.

The requirements (L1) till (L5) are equivalent to the condition that (L,+) is
a commutative group with neutral element o. The synonym vector space is
often used instead of linear space. Elements of a linear space are called vectors.

Vectors (or the set of vectors) u1,u2, . . . ,un are called linearly indepen-
dent if the only solution of the vector equation

t1u1 + t2u2 + · · ·+ tnun = o

is the n-tuple (t1, t2, . . . , tn) where ti = 0 for i = 1, 2, . . . , n. Otherwise, we say
that vectors u1,u2, . . . ,un are linearly dependent.
Any linearly independent set is contained in some maximal linearly inde-
pendent set, i.e. in a set which ceases to be linearly independent after any
element in L has been added to it.

We say that the linear space L is finite dimensional, if there exists
a natural number k such that every set of vectors with k+1 elements is linearly
dependent. In a finite dimensional linear space L all maximal independent sets
have the same cardinality n – this cardinality is called dimension of linear
space L and L is called n-dimensional linear space.

Basis of finite dimensional linear space L is an arbitrary maximal linearly
independent set if its vectors.

4.11. ALGEBRAIC STRUCTURE 111

Let (F,+, .) be a field. Linear space (Fn,+, .) is the space of all ordered
n-tuples of the type u = u1u2 . . . un where ui ∈ T with vector addition and
scalar multiplication defined as follows:
Let u = u1u2 . . . un, v = v1v2 . . . vn, t ∈ T . Then

u + v = (u1 + v1), (u2 + v2), . . . (un + vn) t.u = (tu1), (tu2), . . . , (tun).

The linear space (Fn,+, .) is called arithmetic linear space over the field F .

Scalar product of vectors u ∈ Fn, v ∈ Fn is defined by the following
formula:

u ∗ v = u1v1 + u2v2 + · · ·+ unvn

The vectors u, v are called orthogonal if u ∗ v = 0.

Importance of the arithmetic linear space (Fn,+, .) over the field F follows from
the next theorem:

Theorem 4.15. Every n-dimensional linear space over the field F is isomorphic
to the arithmetic linear space (Fn,+, .) over the field F .

The theory of linear codes makes use of the fact that the code alphabet A
is a field with operations ”+” and ”.”. Then the set of all words of the length
n is n-dimensional arithmetic linear space over the field A. We have seen that
a factor ring Zp is a finite field if and only if p is prime. There are also other
finite fields called Galois fields denoted by GF (pn) with pn elements where p is
prime. There are no other finite fields except fields of the type Zp and GF (pn)
with p prime.

In the theory of linear codes the cardinality of the code alphabet is lim-
ited to the numbers of the type pn where p is prime and n = 1, 2, . . . , i. e.,
2,3,4,5,7,8,9,11,13,16,17.. . , but the code alphabet cannot contain 6,10,12,14,15,
etc., elements because these numbers are not powers of primes. These limi-
tations are not crucial since the most important code alphabet is the binary
alphabet {0, 1} and alphabets with greater non feasible number of elements can
be replaced by fields with the nearest greater cardinality (several characters of
which will be unused).

112 CHAPTER 4. CODING THEORY

4.12 Linear codes

In this chapter we will suppose that the code alphabet A = {a1, a2, . . . , ap}
has p characters where p is a prime number or a power of prime. We further
suppose that operations + and . are defined on A such that the structure (A,+, .)
is a finite field. Then we can create the arithmetic n-dimensional linear space
(An,+, .) (shortly only An) over the field A. Thus the set An of all words of
the length n of the alphabet a can be considered to be a n-dimensional linear
space.

Definition 4.20. A code K is called linear (n, k)-code, if it is k-dimensional
subspace of the linear space An, i. e., if dim(K) = k, and for arbitrary a,b ∈ K
and arbitrary c ∈ A it holds:

a + b ∈ K, c.a ∈ K.

Since a linear (n, k)-code is k-dimensional linear space, it has to have a basis
B = {b1,b2, . . . ,bk} with k elements. Then every code word a ∈ K has unique
representation in the form:

a = a1b1 + a2b2 + · · ·+ akbk, (4.44)

where a1, a2, . . . , an are coordinates of the vector a in the basis B. Since |A| = p
then in the place of every ai p different numbers can stand what implies that
there exists pk different code words. Hence, a linear (n, k)-code has pk code
words.
Let φ : Ak → An be a mapping defined by formula:

∀(a1a2 . . . ak) ∈ Ak φ(a1a2 . . . ak) = a1b1 + a2b2 + · · ·+ akbk.

Then φ is one to one mapping Ak ↔ K and thus by definition 4.17 (page 105)
φ is the encoding of information characters and the linear (n, k)-code K has k
information characters and n− k check characters.

We will often use an advantageous matrix notation in which vectors stand
as matrices having one column or one row. Now we make an agreement that
the words – i. e., vectors a ∈ An – will be always considered as one-column
matrices, i. e., if the word a = a1a2 . . . ak stands in the matrix notation we

4.12. LINEAR CODES 113

will suppose that

a =

a1

a2

. . .
ak

.

If vector a in the form of one-row matrix is needed, it will be written as the
transposed matrix aT , i. e.,

aT =
[
a1 a2 . . . ak

]
.

The scalar product of two vectors u, v ∈ An can be considered to be a product
of two matrices and can be written as uT .v.

Definition 4.21. Let K be a linear (n, k)-code, let B = {b1,b2, . . . ,bk} be an
arbitrary basis of the code K. Let bi = (bi1 bi2 . . . bin)T for i = 1, 2, . . . , k. Then
the matrix

G =

bT
1

bT
2

. . .
bT

k

=

b11 b12 . . . b1n

b21 b22 . . . b2n

.
bk1 bk2 . . . bkn

(4.45)

of the type (k × n) is called generating matrix of the code K.

Remark. By definition 4.21 every matrix G for which

a) every row is a code word,

b) rows are linearly independent vectors, i. e., the rank of G equals to k,

c) every code word is a linear combination of rows of G,

is a generating matrix of the code K.
If the matrix G′ originated from a generating matrix G of a linear code K by
several equivalent row operations (row switching, row multiplication by a non
zero constant and row addition) then the matrix G′ is also a generating matrix
of K.

Remark. Let (4.45) be the generating matrix of a linear (n, k)-code for the
basis B = {b1,b2, . . . ,bk}. If u1, u2, . . . , uk are the coordinates of the word
a = a1a2 . . . an in the basis B then

aT = u1b
T
1 + u2b

T
2 + · · ·+ ukb

T
k =

[
u1 u2 . . . uk

]
.

bT
1

bT
2

. . .
bT

k

,

114 CHAPTER 4. CODING THEORY

or more detailed:

[
a1 a2 . . . an

]
=
[
u1 u2 . . . uk

]
.

b11 b12 . . . b1n

b21 b22 . . . b2n

.
bk1 bk2 . . . bkn

,

or shortly:
aT = uT .G .

Example 4.29. Several linear codes.

a) Binary code of the length 4 with parity check – linear (4, 3)-code:
K ⊂ A4, A = {0, 1} : 0000, 0011, 0101, 0110

1001, 1010, 1100, 1111
Basis: B = {0011, 0101, 1001}.

Generating matrix G =

0 0 1 1
0 1 0 1
1 0 0 1

b) Ternary repeating code of the length 5 – linear (5, 1)-code:
K ⊂ A5, A = {0, 1, 2} : 00000, 11111, 22222
Basis: {11111}.

Generating matrix G =
[

1 1 1 1 1
]

c) Binary doubling code of the length 6 – linear (6, 3)-code:
K ⊂ A6, A = {0, 1} : 000000, 000011, 001100, 001111

110000, 110011, 111100, 111111
Basis: {000011, 001100, 110000}.

Generating matrix G =

0 0 0 0 1 1
0 0 1 1 0 0
1 1 0 0 0 0

d) Decimal code of the length n with check digit modulo 10 is not a linear
code, since a finite field with 10 elements does not exist.

4.12. LINEAR CODES 115

Definition 4.22. We say that two block codes K, K′ of the length n are
equivalent if there exists a permutation π of the set {1, 2, . . . , n} such that
it holds

∀a1a2 . . . an ∈ A
n a1a2 . . . an ∈ K if and only if aπ[1]aπ[2] . . . aπ[n] ∈ K

′ .

By definition 4.18 (page 106) a block code K with k information characters
and n − k check characters is systematic if for every a1a2 . . . ak ∈ Ak there
exists exactly one code word a ∈ K with the prefix a1a2 . . . ak ∈ Ak. We have
shown that a linear (n, k)-code is a code with k information characters and with
n − k check characters, but it do not need to be systematic. Doubling code is
a linear (n = 2k, k)-code which is not systematic if k > 1. It suffices to change
the order of characters in the code word a1a2 . . . an – first the characters on
odd positions and then the characters on even positions, and the new code is
systematic. Similar procedure can be made with any linear (n, k)-code.

Theorem 4.16. A linear (n, k)-code K is systematic if and only if there exists
a generating matrix G of K of the type:

G =
[

E B
]

=

1 0 0 . . . 0 b11 b12 . . . h1n−k

0 1 0 . . . 0 b21 b22 . . . b2n−k

. .
0 0 0 . . . 1 bk1 hk2 . . . hkn−k

. (4.46)

Proof. Let (4.46) be the generating matrix of K. Let u = u1, u2, . . . uk are
the coordinates of the word a = a1a2 . . . an ∈ K in the basis containing the
rows of the generating matrix G. Then by remark following the definition 4.21
aT = bT .G. Specially for u = a1a2 . . . ak it holds:

uT .G =
[
a1 a2 . . . ak

]
.

1 0 0 . . . 0 b11 b12 . . . b1n−k

0 1 0 . . . 0 b21 b22 . . . b2n−k

. .
0 0 0 . . . 1 bk1 bk2 . . . bkn−k

=

=
[
a1 a2 . . . ak vk+1 . . . vn

]
,

where vk+i is uniquely defined by the equation:

vk+i =
[
a1 a2 . . . ak

]
.

b1i

b2i

. . .
bki

.

116 CHAPTER 4. CODING THEORY

For every a1a2 . . . ak ∈ Ak there exists exactly one code word of the code K with
the prefix a1a2 . . . ak. Hence the code K is systematic.

Let the code K is systematic. If the first k rows of the generating matrix G
of K are linearly independent we can obtain from G by means of equivalent row
operations an equivalent matrix G′ in the form G′ =

[
E B

]
which is also

a generating matrix of the code K.
If the first k rows of generating matrix G of K are not linearly independent,
then G can be converted by means of equivalent row operations to the form:

G′ =

d11 d12 . . . d1k d1(k+1) d1(k+2) . . . d1n

d21 d22 . . . d2k d2(k+1) d2(k+2) . . . d2n

. .
d(k−1)1 d(k−1)2 . . . d(k−1)k d(k−1)(k+1) d(k−1)(k+2) . . . d(k−1)n

0 0 . . . 0 dk(k+1) dk(k+2) . . . dkn

.

The rank of the matrix G′ equals to k since it is equivalent to the matrix G
which has k linearly independent rows. For u, v ∈ Ak such that u 6= v it holds
uT .G′ 6= vT .G′. Both uT .G′ and vT .G′ are code words. Notice that the first
k coordinates of the vector uT .G do not depend on the k-th coordinate of the
vector u what implies that there are several code words of the code K with the
same prefix – the code K is not systematic. The assumption that the first k
columns of generating matrix are not independent leads to the contradiction. �

Corollary. A linear (n, k)-code K is systematic if and only if the first k rows
of its generating matrix G are linearly independent.

Theorem 4.17. Every linear (n, k)-code K is equivalent to some systematic
linear code.

Proof. Let G be a generating matrix of a linear (n, k)-code K. The matrix G
has k linearly independent rows and hence it has to have at least one k-tuple of
linearly independent columns. If the first k columns are independent, the code
K is systematic by the corollary of the theorem 4.16.
If the first k columns are not linearly independent, we can make such permuta-
tion π of columns in G so that in the permutated matrix, the first k columns
are linearly independent

Then the corresponding code K′ obtained by the same permutation π of
characters in code words of K is systematic. �

There exists another way of characterization of a linear (n, k)-code. This
method specifies the properties of code words by an equation which the code

4.12. LINEAR CODES 117

words have to satisfy. So the binary block code of the length n with even parity
check character can be defined by the equation:

x1 + x2 + · · ·+ xn = 0

The doubling code of the length n = 2k is characterized by the system of
equations:

x1 − x2 = 0

x3 − x4 = 0

. . .

x2i−1 − x2i = 0

. . .

xn−1 − xn = 0

And here is the system of equation for a repeating code of the length n:

x1 − x2 = 0

x1 − x3 = 0

. . .

x1 − xn = 0

Definition 4.23. Check matrix of the linear code K is such matrix H of
elements of code alphabet A for which it holds: The word v = v1v2 . . . vn is the
code word if and only if:

H.v =

h11 h12 . . . h1n

h21 h22 . . . h2n

. .
hm1 hm2 . . . hmn

.

v1
v2
. . .
vn

=

0
0
. . .
0

= o . (4.47)

Shortly: v ∈ K if and only if H.v = o.

Suppose we are given a linear (n, k)-code K with generating matrix:

G =

bT
1

bT
2

. . .
bT

k

=

b11 b12 . . . b1n

b21 b22 . . . b2n

.
bk1 bk2 . . . bkn

(4.48)

118 CHAPTER 4. CODING THEORY

of the type (k × n). What is the check matrix of the code K, i. e., the matrix
H such that H.u = o if and only if u ∈ K?
The first visible property of the matrix H is that it should have n columns in
order H.u was defined for u ∈ An.
The set of all u ∈ An such that H.u = o is a subspace of the space An with
dimension equal to n− rank(H) = dim(K) = k, from where rank(H) = n − k.
Hence it suffices to search the check matrix H as a matrix of the type ((n−k)×n)
with n− k linearly independent rows. Let hT is arbitrary row of the matrix H.
Then every code word u ∈ K has to satisfy:

uT .h = u1h1 + u2h2 + · · ·+ unhn = 0 . (4.49)

We could write out the system of pk = |K| linear equations of the type (4.49),
one for every code word u ∈ K. Such system of equation would contain too much
linearly dependent equations. Suppose that (4.49) holds for all vectors of a basis
{b1,b2, . . . ,bk} of the subspace K. Then (4.49) has to hold for all vectors of
the linear subspace K. That is why it suffices to solve the following system of
equations:

bT
1 .h = 0

bT
2 .h = 0
. . .

bT
k .h = 0

,

in matrix notation:
G.h = o , (4.50)

where G is the generating matrix with rows bT
1 ,b

T
2 , . . . ,b

T
k .

Since the rank of matrix G is k, the set of all solutions of the system (4.50) is
a subspace with dimension (n− k) and that is why it is possible to find (n− k)
linearly independent solutions h1,h2, . . . ,hn−k of the system (4.50) which will
be the rows of required check matrix H, i. e.,

H =

hT
1

hT
2

. . .
hT

n−k

.

Note that

G.HT =

bT
1

bT
2

. . .
bT

k

k×n

[
h1 h2 . . . hn−k

]

n×(n−k)
=

0 0 . . . 0
0 0 . . . 0
.
0 0 . . . 0

k×(n−k)

.

4.12. LINEAR CODES 119

Let us have a matrix H of the type ((n− k)×n), let rank(H) = (n− k) and let
G.HT = Ok×(n−k), where Ok×(n−k) is the null matrix of the type (k× (n−k)).
Denote by N ⊆ An the linear subspace of all solutions of the equation Hu = o.
Since for all vectors of the basis of the code K is H.bi = o, i = 1, 2, . . . k, the
same holds for arbitrary code word u ∈ K, u =

∑k
i=1 uibi:

H.u = H.

k∑

i=1

uibi =

k∑

i=1

H.(uibi) =

k∑

i=1

ui(H.bi) =

k∑

i=1

ui.o = o .

We have just proven K ⊆ N .
Since rank(H) = (n− k), dim(N) = n− rank(H) = k. Since K ⊆ N , the basis
b1,b2, . . . ,bk is the basis of the subspace N and hence K = N .

Now we can formulate these proven facts in the following theorem.

Theorem 4.18. Let K is a linear (n, k)-code with a generating matrix G of the
type (k × n). Then the matrix H of the type ((n − k) × n) is the check matrix
of the code K if and only if

dim(H) = (n− k) a G.HT = Ok×(n−k), (4.51)

where Ok×(n−k) is the null matrix of the type (k × (n− k)).

The situation is much more simple for systematic codes as the next theorem
says.

Theorem 4.19. A linear (n, k)-code K with the generating matrix of the type
G =

[
Ek×k B

]
has the check matrix H =

[
−BT E(n−k)×(n−k)

]
.

Proof. Denote m = n− k. Then we can write:

G =

bT
1

bT
2

. . .
bT

p

. . .
bT

k

=

1 0 . . . 0 . . . 0 b11 b12 . . . b1q . . . b1m

0 1 . . . 0 . . . 0 b21 b22 . . . b1q . . . b2m

. . .
0 0 . . . 1 . . . 0 bp1 bp2 . . . bpq . . . bpm

. . .
0 0 . . . 0 . . . 1 bk1 bk2 . . . bkq . . . bkm

,

120 CHAPTER 4. CODING THEORY

H =

hT
1

hT
2

. . .
hT

q

. . .
hT

m

=

−b11 −b21 . . . −bp1 . . . −bk1 1 0 . . . 0 . . . 0
−b12 −b22 . . . −bp2 . . . −bk2 0 1 . . . 0 . . . 0
. . .
−b1q −b2q . . . −bpq . . . −bkq 0 0 . . . 1 . . . 0
. . .
−b1m −b2m . . . −bpm . . . −bkm 0 0 . . . 0 . . . 1

.

It holds for bp, hq:

bT
p = [0 0 . . . 1 . . . 0 bp1 bp2 . . . bpq . . . bpm]

hT
q = [−b1q −b2q . . . −bpq . . . −bkq 0 0 . . . 1 . . . 0]

and that is why bT
p .hq = (−bpq + bpq) = 0 for every p, q ∈ {1, 2, . . . , n} what

implies
G.HT = Ok×(n−k).

Since the matrix H with m = n− k rows contains the submatrix E(n−k)×(n−k)

it holds rank(H) = n − k. The matrix H is by theorem 4.18 the check matrix
of the code K.

Definition 4.24. Let K ⊆ An be a linear (n, k)-code. The dual code K⊥ of
the code K is defined by equation:

K⊥ = {v | a.v = 0 ∀a ∈ K}.

Theorem 4.20. Let K ⊆ An be a linear (n, k)-code with the generating matrix
G and the check matrix H. Then the dual code K⊥ is a linear (n, n − k)-code
with the generating matrix H and the check matrix G.

Proof. It holds v ∈ K⊥ if and only if

G.v = o. (4.52)

Since K⊥ is the set of all solutions of the equation (4.52) and rank(G) = k,
K⊥ is a (n−k)-dimensional subspace of An – i. e., it is a linear (n, (n−k))-code
with check matrix G.
Since H.GT =

(
(GT)T .HT

)T
=
(
G.HT

)T
= OT

k×(n−k) = O(n−k)×k, every row
of the matrix H is orthogonal to the subspace K and hence it is a code word of
the code K⊥. Since rank(H) = (n− k), the set of rows of the matrix H is the
basis of the whole subspace K⊥, i. e., matrix H is the generating matrix of the
code K⊥.

4.13. LINEAR CODES AND ERROR DETECTING 121

Example 4.30. The dual code of the binary repeating code K of the length 5
is the code containing all binary words v1v2 . . . vn such that

v1 + v2 + v3 + v4 + v5 = 0.

The code K⊥ is the code with even parity check.

Example 4.31. The dual code of the binary doubling code K is K, hence
K⊥ = K. The generating matrix of K is

G =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

It is easy to show that G.GT = O3×3 – the generating matrix of code K is also
its check matrix.

4.13 Linear codes and error detecting

In definition 4.7 (page 84) we have defined error detection as follows: the code
K detects t-tuple simple errors, if for every code word u and every word w such
that 0 < d(u,w) ≤ t, the word w is a non code word. Theory of linear codes
offers the way of modelling mechanism of error origination as the addition of an
error word e = e1e2 . . . en to the transmitted word v = v1v2 . . . vn. Then we
receive the word w = w1w2 . . . wn = v + e instead of transmitted word v.

Definition 4.25. We say that the linear code K detects error word e, if
v + e is a non code word for every code word v.

Definition 4.26. Hamming weight ‖a‖ of the word a ∈ An is the number
of non zero characters of the word a.

Theorem 4.21. All code words of binary linear code K have even Hamming
weight, or the number of words of even Hamming weight of K equals to the
number of words of K of odd Hamming weight.

Proof. Let v be a code word of odd Hamming weight. Define a mapping
f : K → K by the following formula

f(w) = w + v .

122 CHAPTER 4. CODING THEORY

The mapping f is one to one mapping assigning to every word of even weight
a word of odd weight and vice versa. Therefore, the number of words of even
Hamming weight of K equals to the number of words of K of odd Hamming
weight. �

Note that a linear code K detects t-tuple simple errors if and only if it detects
all error words having Hamming weight less of equal to t.

The minimum distance of a code ∆(K) has crucial importance for error
detection and error correction. ∆(K) was defined by definition 4.7 (page 84) as
the minimum of Hamming distances of all pairs of different code words of the
code K. Denote d = ∆(K). Then the code K detects all (d−1)-tuple errors and

corrects all t-tuple errors for t <
d

2
(see the theorem 4.12 – page 103).

A linear code K allows even simpler calculation of the minimal distance ∆(K)
of K.

Theorem 4.22. Let K be a linear code. The minimum distance ∆(K) of K
equals to the minimum of Hamming weights of all non zero code words of K,
i. e.,

∆(K) = min
u∈K,u 6=o

{‖u‖} .

Proof.
1. Let u, v ∈ K be two code words such that d(u,v) = ∆(K). Let w = u− v.
The word w has exactly as many characters different from zero character, as in
how many positions the words u, v differ. Therefore:

min
u∈K,u 6=o

{‖u‖} ≤ ‖w‖ = d(u,v) = ∆(K) . (4.53)

2. Let w ∈ K be a code word such that ‖w‖ = minu∈K,u 6=o{‖u‖}. Then:

∆(K) ≤ d(o,v) = ‖w‖ ≤ min
u∈K,u 6=o

{‖u‖} . (4.54)

The desired assertion of the theorem follows from (4.53) and (4.54). �

Definition 4.27. Let H be the check matrix of a linear code K, let
v = v1v2 . . . vn ∈ An be an arbitrary word of the length n of alphabet A.
Syndrome of the word v is a word s = s1s2 . . . sn satisfying the equation:

H.

v1
v2
. . .
vn

=

s1
s2
. . .
sn

, shortly H.v = s .

4.13. LINEAR CODES AND ERROR DETECTING 123

Having received a word w we can calculate its syndrome s = Hw. If s 6= o
we know that an error occurred. Moreover, we know that the syndrome of the
received word w = v + e (where v was the transmitted code word) is the same
as the symbol of the error word e since

Hw = H(v + e) = Hv + He = o + He = He .

Since the code K is the subspace of all solutions of the equation H = o, every
solution of the equation He = s is in the form e + k where k ∈ K. The set of
all words of this form will be denoted by e + K, i. e.:

e +K = {w | w = e + k, k ∈ K}.

Theorem 4.23. Let K be a linear code with the check matrix H and minimum
distance ∆(K). Let d be the minimum of the number of linearly dependent
columns5 of the check matrix H. Then:

d = ∆(K) .

Proof. According to the theorem 4.22 ∆(K) equals to the minimum weight
of non zero code words. Let d be the minimum number of linearly dependent
columns of check matrix H.
Let c1, c2, . . . , cn are the columns of the check matrix H, i. e.,

H =
[

c1 c2 . . . cn

]
.

Denote by u ∈ K the non zero code word with the minimum Hamming weight
‖u‖ = t. The word u has characters ui1 , ui2 , . . . , uit on the positions i1, i2, . . . , it
and the character 0 on other positions, i. e.,

uT =
[

0 0 . . . 0 ui1 0 . . . 0 ui2 0 0 uit 0 . . . 0 0
]
.

The word u is the code word, that is why Hv = o, i. e.:

Hu =

n∑

i=1

ui.ci = ui1ci1 + ui2ci2 + · · ·+ uituit = o . (4.55)

5Let d be such number that in the check matrix H there exist d linearly dependent columns
but every (d − 1)-tuple of columns of H is the set of linearly independent columns.

124 CHAPTER 4. CODING THEORY

Since all coefficients uij are non zero characters, the columns ci1 , ci2 , . . . , cit are
linearly dependent. We have just proven:

d ≤ ∆(K) . (4.56)

Let us have d linearly dependent columns ci1 , ci2 , . . . , cid
. Then there exist

numbers ui1 , ui2 , . . . , uid
such that at least one of them is different from zero

and
ui1ci1 + ui2ci2 + · · ·+ uid

cid
= o .

Let us define the word u that has characters ui1 , ui2 , . . . , uid
on positions

i1, i2, . . . , id and zero character on other positions, i. e.:

uT =
[

0 0 . . . 0 ui1 0 . . . 0 ui2 0 0 uit 0 . . . 0 0
]
.

Then

Hu =

n∑

i=1

ui.ci = ui1ci1 + ui2ci2 + · · ·+ uitcid
= o , (4.57)

and hence u is a non zero word with Hamming weight ‖u‖ ≤ d. We have proven:

∆(K) ≤ d .

The last inequality with (4.56) gives desired assertions of theorem. �

Theorem 4.24. A linear code detects t-tuple simple errors if and only if every
t columns of the check matrix of K are linearly independent.

Proof. Denote d = ∆(K). By the last theorem 4.23 there exist d linearly
dependent columns in check matrix H of K but for t < d every t columns are
linearly independent.

If the code K detects t-tuple errors then t < d and (by theorem 4.23) every
t columns of H are linearly independent.

If every t columns of check matrix H are linearly independent (again by
theorem 4.23), it holds t < d and that is why the code K detects t errors. �

4.14. STANDARD CODE DECODING 125

4.14 Standard code decoding

In previous section, we have shown how to determine the maximum number t
of errors which a linear code K is capable to detect, and how to decide whether
the received word was transmitted without errors or not – of course provided
that the number of errors is not greater than t.

Having received a non code word w we would like to assign it the code word v
which was probably transmitted and from which the received word w originated
by effecting several errors – again provided that the number of errors occurred
is limited to some small number. For this purpose the decoding δ of the code
K was defined (see section 4.10, definition 4.16, page. 105) as a function whose
codomain is a subset of An, contains K and which assigns to every word from
its codomain a code word, and which is identity on K (for all v ∈ K it holds
δ(v) = v).

If the word v was transmitted and errors represented by the error word e
occurred, we receive the word e + v. If δ(e + v) = v we have decoded correctly.

Definition 4.28. We say that a linear code K with decoding δ corrects the
error word e if for all v ∈ K it holds:

δ(e + v) = v .

Definition 4.29. Let K ⊆ An be a linear code with code alphabet A. Let us
define for every e ∈ An:

e +K = {e + v | v ∈ K} .

The set e +K is called class of the word e according to the code K.

Theorem 4.25. Let K ⊆ An be a linear (n, k)-code with code alphabet A,
|A| = p. For arbitrary words e, e′ ∈ An it holds:

(i) If e− e′ is a code word then e +K = e′ +K.

(ii) If e− e′ is not a code word then e +K, e′ +K are disjoint.

(iii) The number of words of every class is equal to the number of all code
words, i. e., |e +K| = |K| = pk and the number of all classes is pn−k.

126 CHAPTER 4. CODING THEORY

Proof.
(i) Let (e− e′) ∈ K.
Let v ∈ K, and hence (e + v) ∈ (e + K). Set u = v + (e− e′). K is a linear
space and (e− e′) ∈ K. Therefore u ∈ K what implies (e′ + u) ∈ (e′ +K). Now
we can write e′ + u = e′ + v + (e− e′) = e + v. That is why (e + v) ∈ (e′+K).
We have shown that (e + K) ⊆ (e′ + K). The reverse inclusion can be shown
analogically. Thus (e +K) = (e′ +K).

(ii) Let (e− e′) /∈ K.
Suppose that there is a word w ∈ (e +K) ∩ (e′ +K). Then

w = e + v ,

w = e′ + v′,

for some code words v, v′ ∈ K. From two last equations it follows
e + v = e′ + v′ and further e− e′ = v′ − v ∈ K (since both words v, v′ are
vectors of linear space K) which is in contradiction with assumption of (ii).

(iii) We have shown that a linear (n, k)-code with p-character code alphabet has
pk code words (see the text following definition 4.20, page 112). We want to
show that |e +K| = |K| = pk. It suffices to show that if u, w ∈ K, u 6= w then
e + u 6= e + w. If e + u = e + w then (after subtracting e from both sides of
the equation) u = w. Therefore, all classes of words according to the code K
have the same number of elements pk.
Since the union of all clases of words according to the code K is An and
|An| = pk, the number of all classes according to the code K is equal to

|An|

|K|
=
pn

pk
= pn−k.

�

Definition 4.30. Standard decoding of a linear code K. Define a complete
decoding δ : An → K of a code K as follows: Choose one representative from
every class according to the code K so that its weight is minimal in its class.
(The choice does not need to be unique – several words with the same minimum
weight can exist in one class.) Then every received word w ∈ An is decoded as
v = w − e where error word e is the representative of the class of the word w:

δ(w) = w − [representative of the class (w +K)].

4.14. STANDARD CODE DECODING 127

Example 4.32. Binary (4, 3)-code K of even parity has two classes:

0000 +K = {0000 0011 0101 0110 1001 1010 1100 1111}
0001 +K = {0001 0010 0100 0111 1000 1011 1101 1110}

The class 0000 + K has an unique representative – the word 0000. The class
0001 + K can have as the representative an arbitrary word from the following
words 0001, 0010, 0100, 1000. According to our choice of representative the
standard decoding corrects one simple error on the forth, third, second or first
position of the received word.

If the error occurs on other places the standard decoding does not decode
correctly. This is not a surprising discovery for us since we know that the
minimum distance of the even parity code is 2 and hence it cannot correct all
single simple errors.

Theorem 4.26. Standard decoding δ corrects exactly those error words that are
representatives of classes, i. e.,

δ(v + e) = v for all v ∈ K

if and only if the error word e is the representative of some class according to
the code K.

Proof. If the word e is the representative of its class and v ∈ K then the
word v + e is an element of the class e+K. By definition of standard decoding
δ(e + v) = e + v − e = v – standard decoding δ corrects the error word e (see
definition 4.28).

Let the word e′ is not the representative of its class whose representative is
the word e 6= e′. It holds (e− e′) ∈ K. Let v ∈ K, then the word v + e′ is an
element of the class e+K and is decoded as δ(v + e′) = v + e′ − e 6= v. If e′ is
not the representative of its class, the standard decoding does not correct the
error word e′. �

Theorem 4.27. Standard decoding δ is an optimal decoding in the following
meaning: There exists no decoding δ∗ such that δ∗ corrects the same error words
as δ, and moreover several another error words.

128 CHAPTER 4. CODING THEORY

Proof. Let e′ ∈ (e + K), let e be the representative of the class e + K, let
e 6= e′. The word v = e′ − e is a code word not equal to zero word o. If an
error specified by the error word e occurs after the word v was transmitted,
the word v + e = e′ − e + e = e′ is received. Since δ corrects all error words
that are representatives of classes, it holds: δ(v + e) = δ(e′) = v. Decoding
δ∗ corrects the same words as δ (and maybe several others), therefore, it holds
δ∗(e′) = v.

Can the decoding δ∗ correct the word e′? If yes, then it has to hold:
δ∗(o + e′) = o, what is in contradiction with δ∗(e′) = v 6= o. �

Theorem 4.28. Let d = ∆(K) be the minimum distance of a linear code K,

t <
d

2
. Then the standard decoding corrects all t-tuple simple errors.

Proof. Let e be a word of the weight ‖e‖ = t <
d

2
. Let v ∈ (e + K),

v 6= e, v = e + u, u ∈ K. Then ‖u‖ ≥ d, ‖e‖ = t <
d

2
. Therefore, the

number of non zero characters of the word v = e + u is at least d − t – i. e.,

‖v‖ > d− t > t. Hence, every word e with Hamming weight less than
d

2
is the

(unique) representative of some class according to the code K.
By the theorem 4.26, the standard decoding corrects all error words that are
representatives of all classes, therefore, it corrects all error words of Hamming

weight less than
d

2
what is equivalent with the fact that standard decoding

corrects all t-tuple simple errors. �

The principle of standard decoding is the determining which class of words
according to the code K contains the decoded word. For this purpose the
decoding algorithm has to search the decoded word w in so called Slepian’s
table of all words of the length n of alphabet A.

It is the table which has the number m of columns equal to the number of
classes of words according to the code K – m = pn−k, and the number q of
rows equal to the number of code words – q = pk. In every column, there are
all words of one class, in the first row of the table, there are representatives of
corresponding classes.

After determining which column contains the decoded word w we decode in
this way that we subtract from w the word in the first row of the corresponding
column.

4.14. STANDARD CODE DECODING 129

Class Class Class
e1 +K e2 +K em +K

representative e1 = e1 + o e2 = e2 + o . . . em = em + o
e1 + u1 e2 + u1 . . . em + u1

e1 + u2 e2 + u2 . . . em + u2

elements
of classes

.
e1 + uq e2 + uq . . . em + uq

(4.58)

Slepian’s table, m = pn−k, q = |K| = pk.

Slepian’s table has pn elements. In worst case whole the table has to be searched.
The size of this table for often used 64-bit binary codes is 264 > 1019. Clever
implementation replaces full search by binary search and reduces the number of
accesses to the table to 64, but memory requirements remain enormous.

The complexity of this problem can be reduced significantly if we remember
that all words of one class e+K have the same syndrome as its representative e.
Really, it holds for v ∈ K and the check matrix H of the code K:

H.(e + v) = H.e + H.v = H.e + o = H.e .

Therefore, the table with only two rows suffices instead of Slepian’s table.
This table contains representatives e1, e2, . . . , em of classes in the first row and
corresponding syndromes s1, s2, . . . , sm

representative e1 e2 . . . em

syndrome s1 s2 . . . sm
(4.59)

Now the decoding procedure can be reformulated as follows: Calculate the
syndrome of the received word w: s = H.w. Find this syndrome s in the
second row of the table (4.59) and use the corresponding representative e from
the first row of this table and decode:

δ(w) = w − e .

The table (4.59) has pn−k columns and only two rows – its size is significantly
less than that of the original Slepian’s table. Moreover, we can await that even
by large length n of a linear block code K the number n − k will not rise too
much since it means the number of check digits and our effort is to maintain
a good information ratio.

130 CHAPTER 4. CODING THEORY

4.15 Hamming codes

Theorem 4.29. A linear code with alhabet with p characters corrects one simple
error if and only if none of the columns of its check matrix is a scalar multiple
of another column.
Specially a binary code corrects one simple error if and only if its check matrix
contains mutually different non zero columns.

Proof. We know that a code K corrects one error if and only if ∆(K) ≥ 3 what
by theorem 4.23 (page 123) occurs if and only if arbitrary two columns of its
check matrix H are linearly independent.

Two vectors u, v are independent in general case if and only if none of them
is a scalar multiple of another. In the case of binary alphabet if and only if both
vectors u, v are non zero and different. �

Definition 4.31. A binary linear (n, k)-code is called Hamming code, if its
check matrix H has (2(n−k) − 1) columns – all non zero binary words of the
length n − k every one of them occurs as a column of the matrix H exactly
once.

Check matrix H of a linear (n, k)-code has n columns, that is why

n = 2(n−k) − 1.

Therefore Hamming codes exist only for the following (n, k):

(n, k) = (3, 1), (7, 4), (15, 11), (31, 26), . . . (2m − 1, 2m −m− 1),

Note that the information ratio (4.43) (page 107) converges to 1 with m→∞.

For example for m = 6 Hamming (63, 57)-code has information ratio
57

63
> 0.9.

Definition 4.32. Decoding of Hamming code. Let K be a Hamming (n, k)-
code where n = 2m − 1, k = 2m −m − 1 with check matrix H. Suppose that
the columns of the matrix are ordered such that the first column is binary
representation of number 1, the second column is binary representation of 2 etc.
After receiving a word w we calculate its syndrome s = Hw. If s = o, the word
w is a code word and remains unchanged. If s 6= o, the word s is the binary
representation of a number i and we change the character on i-th position of
the received word w. Formally:

δ(w) =

{

w, if s = o

w − ei, if s is the binary representation of the number i,
(4.60)

4.15. HAMMING CODES 131

where ei is the word having character 1 on the position i and characters 0 on
all other positions.

Theorem 4.30. The decoding δ defined in (4.60) corrects one simple error.
More precisely: If the word w differs from a code word v at most at one position
then δ(w) = v.

Proof. If w = v then w is a code word and Hw = Hv = o holds. In this case
δ(w) = w = v.

Let the words v, w differ exactly at one position i, i. e., w = v + ei where ei

is the word containing exactly one character 1 on the position i, i ∈ {1, 2, . . . , n}.
Then

Hw = H(v + ei) = Hv + Hei = Hei .

Then Hei is i-th column of the matrix H and this column is the binary
representation of number i. Therefore, the decoding δ(w) = w − ei = v decodes
correctly. �

The most economic error correcting codes are perfect codes. By definition
4.15 (page 103) a block code K of the length n is t-perfect if the set of balls
{Bt(a) | a ∈ K} is a partition of the set An of all words of the length n.

Theorem 4.31. A linear code K is t-perfect if and only if the set of all words
of the weight less or equal to t is the system of all representatives of all classes
of words according to the code K.

Proof. First note that every word a ∈ An can be the representative of some
class according to the code K – namely that of the class a +K.

In order to prove that the set of all words with weight less or equal to t is
the set of all representatives of all classes, we have to prove two facts:

• every class contains a word with Hamming weight less or equal to t

• if e1, e2 are two words such that ‖e1‖ ≤ t, ‖e2‖ ≤ t, then e1 +K, e2 +K
are two different classes, i. e., e2 /∈ (e1 +K)

1. Let K be a t-perfect linear code – i. e., for every word a ∈ An there exists
exactly one code word b ∈ K such that the distance of words a, b is less or
equal to t, i. e., d(a, b) ≤ t. Denote e = a− b. Since the Hamming distance of
words a, b is less or equal to t it holds ‖e‖ ≤ t and a = e + b.
Every class a + K has a representative e with Hamming weight less or equal
to t.

132 CHAPTER 4. CODING THEORY

Let e1, e2 are two words such that ‖e1‖ ≤ t, ‖e2‖ ≤ t and e2 ∈ (e1 + K).
Then e2 − e1 ∈ K and ‖e2 − e1‖ ≤ 2t. The last inequality implies that
∆(K) ≤ 2t which is in contradiction with the assumption that K corrects t
simple errors. By the theorem 4.12 (page 103) the code K corrects t errors if
and only if ∆(K) ≥ 2t+ 1.

2. Let the set of all words of the Hamming weight less or equal to t is the
system of all representatives of all classes of words according to the code K.
At first we show that ∆(K) ≥ 2t + 1. Suppose that there is a non zero word
a ∈ K such that ‖a‖ < 2t + 1 Then it is possible to write a = e1 − e2 where
‖e1‖ ≤ t, ‖e2‖ ≤ t and e1 6= e2. By assertion (i) of the theorem 4.25 (page 125)
it holds (e1 +K) = (e2 +K), which is in contradiction with the assumption that
e1, e2 are representatives of different classes. If ∆(K) ≥ 2t + 1 then the balls
{Bt(a) | a ∈ K} are mutually disjoint.

Finally we show that for every a ∈ An there exists a ball Bt(b), b ∈ K such
that a ∈ Bt(b). By the assumption there exists e ∈ An, ‖e‖ ≤ t such that
a ∈ (e + K). Hence we can write a = e + b for some b ∈ K. Therefore,
a− b = e, d(a,b) = ‖(a− b)‖ = ‖e‖ ≤ t and thus a ∈ Bt(b).
The system of balls {Bt(a) | a ∈ K} is a partition of the set An – the code K is
t-perfect. �

Theorem 4.32. All Hamming binary codes are 1-perfect. Every 1-perfect
binary linear code is a Hamming code.

Proof. Let K be a Hamming linear (n, k)-code with n = 2m − 1 and
k = 2m −m − 1, let H be the check matrix of K. The Hamming code K has
n − k = m check characters and by the assertion (iii) of the theorem 4.25
(page 125) has 2(n−k) = 2m classes.
Denote e0 = o the zero word of the length 2m − 1 and for i = 1, 2, . . . , 2m − 1

ei =

[
0 0 . . . 0 1

︸︷︷︸

i-th position

0 . . . 0
]

.

All ei for i = 1, 2, . . . , 2m − 1 are non-code words with the Hamming weight
equal to 1.

Examine the classes ei + K for i = 0, 1, 2, . . . , 2m − 1. The class e0 + K is
equal to the set of code words K and that is why it is different from all other
classes.
Suppose that the classes ei +K, ej +K are equal for i 6= j. Then ei − ej ∈ K,
what implies that H(ei − ej) = o = ci − cj where ci and cj are i-th and j-th

4.15. HAMMING CODES 133

column of H. Since the check matrix of a Hamming code cannot contain two
equal columns, the classes ei +K, ej +K are different.

Since, as we have shown, the Hamming code K has 2m classes and that all
classes of the type ei+K for i = 0, 1, 2, . . . , 2m−1 are different, there is no other
class. The set of all words of the length less or equal to 1 creates the system
of all representatives of all classes according to K, that is why the code K is
1-perfect.

Let us have a 1-perfect linear (n, k) code K withm = (n−k) check characters.
The code K has 2m classes of words by the assertion (iii) of the theorem 4.25
(page 125).

Denote by H the check matrix of K. The matrix H has n rows and m
columns. By the theorem 4.29 all columns of H have to be mutually different
and non-zero – then n ≤ 2m − 1. The code K is 1-perfect. By the theorem 4.31
(page 131) all binary words of the length n with the weight 1 or 0 are exactly all
representatives of all classes. The number of such words is n+1 (zero word and
all words of the type ei with exactly one character 1 on position i). Therefore,
it holds:

n+ 1 = 2m,

and

n = 2m − 1.

The type of the check matrix of the code K is (2m − 1)×m and its column are
exactly all nonzero words of the length m. Hence K is a Hamming code. �

Definition 4.33. Extended Hamming binary code is a binary code which
originated by adding parity bit to all code words of a Hamming code.

The extended Hamming code is the linear (2m, 2m−m−1)-code of all words
v = v1v2 . . . v2m such that v1v2 . . . v2m−1 is a word of a Hamming code and
v1 + v2 + · · ·+ v2m = 0. The minimum distance of an extended Hamming code
is 4. This code corrects single errors and detects triple errors.

Remark. Theorem 4.29 gives a hint how to define a p-character Hamming code
as the code with check matrix H of the type (n×m) such that

(i) none column is a scalar multiple of other column

(ii) for every non zero word a ∈ Am there exists a column c of H such a is
a scalar multiple of c

134 CHAPTER 4. CODING THEORY

The matrix H can be constructed from all nonzero columns of the length m
whose the first nonzero character is 1. It can be shown that p-ary Hamming
codes have a lot of properties similar to binary Hamming codes, e. g. all
Hamming codes are 1-perfect.

4.16 Golay code*

Denote by B the square matrix of the type 11× 11 whose the first row contains
the binary word 11011100010 and next rows are right rotations of the first one,
i. e.,

B =

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

. (4.61)

Binary word 11011100010 has on i-th position 1 if and only if i− 1 is a square
modulo 11, i. e., if i− 1 = 02, 12, 22, 32, 42 ≡ 5 a 52 ≡ 3. In this section 4.16
we will suppose that the matrix B is given by (4.61).

Definition 4.34. Golay code G23 is the systematic binary code of the length
23 with generating matrix G23 defined as follows:

G23 =

E12×12
B11×11

11 . . .11

,

where E12×12 is the unit matrix of the type 12×12, B11×11 is the square matrix
of the type 11× 11 defined in (4.61).

The Golay code G24 is the systematic binary code of the length 24 with
generating matrix G24 which originates from matrix G23 by adding the column

4.16. GOLAY CODE* 135

11 . . . 10, i. e.,

G24 =

E12×12 B11×11

11 . . . 11

1
1
. . .
1
0

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

Generating matrix of Golay code G24.

The properties of codes G24, G23.

• Golay code G24 has 12 information characters and 12 check characters.

• The dual code to the Golay code G24 is G24 itself. The generating matrix
of G24 is also its check matrix6.

• The minimum distance of the code G24 is 8.

• The Golay code G23 is a 3-perfect (23, 12)-code.

Theorem 4.33. Tietvinen, Van Lint. The only nontrivial perfect binary
codes are:

a) Hamming codes correcting single errors,

b) Golay code G23 correcting triple errors and codes equivalent with G23,

6It suffices to verify that the scalar multiple of arbitrary two different rows of generating
matrix G24 equals to 0.

136 CHAPTER 4. CODING THEORY

c) repeating codes of the odd length 2t + 1 correcting t-tuple errors for t =
1, 2, 3,

The reader can find proofs of this theorem and other properties of Golay
codes in [1].

Another interesting code is the Golay perfect ternary (11, 6)-code which
corrects 3 errors. Its generating matrix is in the form:

G11 =

E6×6
D5×5

11 . . .11

,

where E6×6 is the unit matrix of the type 6× 6 and where D5×5 is the matrix
whose rows are all right cyclic rotations of the word 01221. Golay code G11

(and equivalent codes), Hamming codes and repeating codes of odd length are
the only ternary nontrivial perfect codes.

In the case of code alphabet with more than 3 characters the only nontrivial
perfect codes are Hamming codes and repeating codes of odd length 2t+ 1.

At the end of this chapter, it is necessary to say that it contains only an
introduction to the coding theory and practice. A lot of topics of coding theory
and coding methods could not be included because the size of this publication
is limited and many omitted subjects require deeper knowledge of notions of
finite algebra as rings of polynomial, Boolean polynomial, finite fields, etc.
Such themes are e. g., cyclic codes, Reed-Muller codes, BCH codes, etc. The
interested reader can find more about coding theory in [1], [2], [11]. Nevertheless,
I hope that the knowledge of this chapter can help the reader in orientation in
coding field of interest.

Chapter 5

Communication channels

5.1 Informal notion of a channel

A communication channel is a communication device with two ends, an input
end and an output one. The input accepts the characters of some input alphabet
Y and delivers the characters of an output alphabet Z. In most cases Y = Z, but
there are cases when a channel works with different input and output alphabets.
That is why we will distinguish input alphabet and output alphabet.

Example 5.1. Let Y = {0, 1} be the input alphabet Y of a channel represented
by voltage level 0 = L-(low – e. g., 0.7 V) and 1 = H-(high – e. g., 5.5 V).
These voltage levels can slightly change during transmission, therefore, we can
represent the voltage range 〈0.7, 2.3〉 as character 0 and voltage range 〈3.9, 5.5〉
as character 1 and the voltage range (2.3, 3, 9) will be represented as erroneous
character ”*”. The output alphabet will be Z = {0, 1, ∗}.

Example 5.2. Let the input alphabet Y of a channel be the set of all 8-bit
binary numbers with even parity. If the channel is a noisy channel, the output
can deliver any 8-bit number. The output alphabet Z is in this case the set of
all 8-bit numbers.

The input of a channel accepts a sequence of characters y1, y2, y3, . . . in
discrete time moments i = 1, 2, 3, . . . , and it delivers a sequence of output
characters in the corresponding time moments, i. e., if the character yi appears
on the input, the character zi appears on the output in the corresponding time
moment. The assumption of the simultaneous appearance of input character and

138 CHAPTER 5. COMMUNICATION CHANNELS

corresponding output character on the input and output contradicts physical law
by which the speed of even the fastest particles – photons – is limited, but the
delay is in most cases negligible for our purposes.

5.2 Noiseless channel

The simplest case of communication channel is memoryless noiseless channel
where the received character zi in time i depends only on the transmitted
character yi in the corresponding time1 , – i. e.:

zi = fi(yi) ,

In a noiseless channel with memory the character zi received in time i
uniquely depends on transmitted word y1, y2, . . . , yi in time moments2

i = 1, 2, . . . , i, i. e.,

zi = Fi(y1, y2, . . . , yi) ,

Another type of communication channel is the noiseless channel with
finite memory, where the output character zi depends only on the last m
transmitted characters, i. e.,

zi = Fi(yi−m+1, yi−m+2, . . . , yi) .

We will require that channels have one obvious property, namely that the
output character zi does not depend on any input character yi+k, k > 0. Any
character received at time i depends only on characters transmitted in time
moments 1, 2, . . . , i, but it does not depend on any character transmitted after
time i. We say that a channel is not predictive.

Noiseless channel is uniquely defined by the system of functions {fi}i=1,2,...,
resp. {Fi}i=1,2,....

1The most common case is when Y = Z and fi is the identity on Y for every i. In general
case the function fi can depend on time moment i.

2For example the key 〈CapsLock〉 causes that after its hitting, the keyboard transmits upper
case letters and another pressing returns the keyboard to lower case mode. This channel
remembers forever that the key 〈CapsLock〉 was transmitted.
Similarly the input 〈Alt〉/〈Shift〉 under OS Windows switches between US and national
keyboard.

5.3. NOISY COMMUNICATION CHANNELS 139

5.3 Noisy communication channels

In real situations a noiseless channel is rather an exception than a rule. What
makes our life interesting in modern time is ”channel noise” – you cannot be
dead certain what the output will be for a given input. Industrial interference,
weather impact, static electricity, birds flying around antennas and many other
negative effects are the causes of transmission failures3.

After transmitting an input word y1, y2, . . . , yi, we can receive, owing to
noise, an arbitrary word z1, z2, . . . , zi, of course, every one with a different
probability. The conditional probability of receiving the word z1, z2, . . . , zi given
the input word y1, y2, . . . , yi was transmitted will be denoted by

ν(z1, z2, . . . , zi|y1, y2, . . . , yi) .

Since the input alphabet Y , output alphabet Z and the function

ν :

∞⋃

i=1

(Zi × Y i)→ 〈0, 1〉

fully characterize the communication channel we can define:

Definition 5.1. The communication channel C is an ordered triple
C = (Y, Z, ν) where Y is an input alphabet, Z is an output alphabet
and ν :

⋃∞
i=1(Z

i × Y i)→ 〈0, 1〉, ν(z1, z2, . . . , zi|y1, y2, . . . , yi) is the conditional
probability of the event that the word z1, z2, . . . , zi occurs on the output given
the input word is y1, y2, . . . , yi.

Denote νi(zi|y1, y2, . . . , yi) the conditional probability of the event that the
character zi occurs on the output in time moment i given the word y1, y2, . . . , yi

is on the input of the channel. Then

νi(zi|y1, y2, . . . , yi) =
∑

z1,z2,...,zi−1

ν(z1, z2, . . . , zi|y1, y2, . . . , yi).

We say that the channel C is memoryless channel, if νi(zi|y1, y2, . . . , yi)
depends only on yi, i. e., if

νi(zi|y1, y2, . . . , yi) = νi(zi|yi).

3A human can be also considered a transmission channel. He reads numbers (of goods,
bank accounts, railway cars, personal identification numbers etc.) or a text and transmits
character in such a way that he types them on a keyboard into a registration cash desk or a
computer. Humans make errors that is why this channel is a noisy channel. Error correction
codes are often used in noisy channels in order to ensure reliable communication.

140 CHAPTER 5. COMMUNICATION CHANNELS

If moreover νi(zi|yi) does not depend on i, i. e., if νi(zi|yi) = ν(zi|yi), we say
that C is stationary memoryless channel.
If

ν(z1, z2, . . . , zi|y1, y2, . . . , yi) = ν(z1|y1)ν(z2|y2) . . . ν(zi|yi) =

i∏

k=1

ν(zk|yk),

we say that C is the stationary independent channel.

5.4 Stationary memoryless channel

Let us have a stationary memoryless channel with input alphabet
A = {a1, a2, . . . , an} and output alphabet B = {b1, b2, . . . , br}. Denote
qij = ν(bj |ai) the conditional probability that the character bj occurs on the
output given the input character is ai.
Numbers qij are called transition probabilities and the matrix of the type
n× r

Q =

q11 q12 . . . q1r

q21 q22 . . . q2r

.
qn1 qn2 . . . qnr

is matrix of transition probabilities. Note that the sum of elements of every
row of the matrix Q equals to 1, i. e.,

∑r
j=1 qkj = 1 for every k = 1, 2, . . . , n.

Let pi = P (ai) be the probability of the event that the character ai occurs
on the input of the channel. The joint probability P (ai ∩ bj) of the event, that
the character ai occurs on channel input and at the same time the character bj
occurs on channel output is:

P (ai ∩ bj) = piqij .

The probability P (bj) that bj occurs on the output can be calculated as the
sum of probabilities: P (a1 ∩ bj) + P (a2 ∩ bj) + · · ·+ P (an ∩ bj), i. e.,

P (bj) =
n∑

t=1

ptqtj .

5.4. STATIONARY MEMORYLESS CHANNEL 141

The occurrence of the character ai on the channel input, resp., the occurrence
of the character bj on the channel output can be considered as the result of
experiments

A =
{
{a1}, {a2}, . . . , {an}

}
,

B =
{
{b1}, {b2}, . . . , {br}

}
.

The person who receives messages wants to know what character was transmit-
ted – the result of the experiment A. However, he knows only the result of the
experiment B. We have shown in section 2.7 that the mean value of information
about experiment A contained in experiment B can be expressed as the mutual
information I(A,B) of experiments A, B for which we make use of the formula
(2.14) from the theorem 2.14 (page 47)

I(A,B) =

n∑

i=1

m∑

j=1

P (Ai ∩Bj). log2

(
P (Ai ∩Bj)

P (Ai).P (Bj)

)

. (5.1)

The formula (5.1) can be rewritten in terms of probabilities pi, qij as follows:

I(A,B) =
n∑

i=1

r∑

j=1

P (ai ∩ bj) log2

P (ai ∩ bj)

P (ai)P (bj)

=

n∑

i=1

r∑

j=1

piqij log2

piqij
pi

∑n
t=1 ptqtj

=

n∑

i=1

pi

r∑

j=1

qij log2

qij
∑n

t=1 ptqtj
. (5.2)

If the experiment A will be independently repeated many times (i. e., if the
outputs of a stationary memoryless source (A∗, P) with character probabilities
pi, i = 1, 2, . . . , n occur on the input of the channel), the expression (5.1) resp.,
(5.2) is the mean value of information per character transmitted through the
channel.

142 CHAPTER 5. COMMUNICATION CHANNELS

Symmetric binary channel is a channel with input alphabet
A = {0, 1}, output alphabet B = {0, 1}, and matrix of transmission
probabilities

Q =

(
q 1− q

1− q q

)

, (5.3)

where 0 ≤ q ≤ 1. In this case n = 2 and r = 2.

Note that for q = 1/2 is

Q =

(
1/2 1/2
1/2 1/2

)

, (5.4)

and that is why

I(A,B) =

2∑

i=1

pi

2∑

j=1

1

2
log2

1/2
∑2

t=1 pt.1/2

=

2∑

i=1

pi

2∑

j=1

1

2
log2

1/2

(1/2).
∑2

t=1 pt

=

2∑

i=1

pi

2∑

j=1

1

2
log2 1 = 0

for arbitrary values of probabilities p1, p2. The channel transmits no information
in this case.

Let us return to general stationary memoryless channel and let us search for
probabilities p1, p2, . . . , pn which maximize the amount of transferred informa-
tion. This problem can be formulated as a problem to maximize the function
(5.2) subject to constraints

∑n
i=1 pi = 1 and pi ≥ 0 for i = 1, 2, . . . , n. To solve

this problem Lagrange multipliers method can be applied.

5.4. STATIONARY MEMORYLESS CHANNEL 143

Set

F (p1, p2, . . . , pn) = I(A,B) + λ
(

1−
n∑

i=1

pi

)

=

=
n∑

i=1

pi

r∑

j=1

qij log2

qij
∑n

t=1 ptqtj
︸ ︷︷ ︸

(∗)

+λ
(

1−
n∑

i=1

pi

)

. (5.5)

Partial derivative of the term (*) in (5.5) is calculated as follows:

∂

∂pk
log2

qij
∑n

t=1 ptqtj
=

∂

∂pk
log2(e) · ln

qij
∑n

t=1 ptqtj
=

= log2(e) ·

∑n
t=1 ptqtj
qij

·
qij

−
(
∑n

t=1 ptqtj

)2 · qkj = − log2(e) ·
qkj

∑n
t=1 ptqtj

.

Then it holds for partial derivative of F with respect to k-th variable:

∂F

∂pk
=

∂

∂pk

(

I(A,B) + λ
(

1−
n∑

i=1

pi

)
)

=
∂

∂pk

(

I(A,B)
)

− λ

=

r∑

j=1

qkj log2

qkj
∑n

t=1 ptqtj
− log2 e

n∑

i=1

pi

r∑

j=1

qijqkj
∑n

t=1 ptqtj
− λ

=
r∑

j=1

qkj log2

qkj
∑n

t=1 ptqtj
− log2 e

r∑

j=1

∑n
i=1 piqij

∑n
t=1 ptqtj

qkj − λ

(5.6)

=

r∑

j=1

qkj log2

qkj
∑n

t=1 ptqtj
− log2 e

r∑

j=1

qkj − λ

=

r∑

j=1

qkj log2

qkj
∑n

t=1 ptqtj
− (log2 e+ λ)
︸ ︷︷ ︸

γ

. (5.7)

144 CHAPTER 5. COMMUNICATION CHANNELS

Denote (log2 e+ λ) = γ and set all partial derivatives equal to 0. The result is
the following system of equations for unknown p1, p2, . . . , pn and γ:

n∑

i=1

pi = 1 (5.8)

r∑

j=1

qkj log2

qkj
∑n

t=1 ptqtj
= γ for k = 1, 2, . . . , n . (5.9)

It can be shown that the function I(A,B) of variables p1, p2, . . . , pn in formula
(5.2) is concave and that fulfilling of equations suffices for the maximality of
information I(A,B). (see [7], part 3.4).
The equations (5.8) and (5.9) are called capacity equations for the channel.

Please observe that after substitution4

r∑

j=1

qkj log2

qkj
∑n

t=1 ptqtj
= γ for k = 1, 2, . . . , n ,

into formula (5.2) we obtain

I(A,B) =

n∑

i=1

pi

r∑

j=1

qij log2

qij
∑n

t=1 ptqtj
=

n∑

i=1

piγ = γ

n∑

i=1

pi = γ .

If γ is the solution of the system (5.8) and (5.9) then the value of variable
γ equals to the maximum amount of information which can be transmitted
through the channel. This number will be considered as the capacity of the
stationary memoryless channel. Theory of information studies more general
types of communication channels and several different ways of defining channel
capacity as we will see in section 5.6.

4γ is the solution of the system (5.8) and (5.9).

5.4. STATIONARY MEMORYLESS CHANNEL 145

The capacity equations (5.3) for symmetric binary channel with the matrix
Q (5.3) can be rewritten into the form:

p1 + p2 = 1 (5.10)

q log2

q

p1q + p2(1− q)
+ (1− q) log2

1− q

p1(1− q) + p2q
= γ (5.11)

(1− q) log2

1− q

p1q + p2(1 − q)
+ q log2

q

p1(1− q) + p2q
= γ . (5.12)

Right sides of (5.11) and (5.12) are equal what implies the equality of left sides.
After subtracting q log2 q and (1− q) log2(1− q) from both sides of this equality
we get

q log2[p1q + p2(1 − q)] + (1 − q) log2[p1(1 − q) + p2q] =

= (1 − q) log2[p1q + p2(1− q)] + q log2[p1(1 − q) + p2q] ,

from where

(2q − 1) log2[p1q + p2(1− q)] = (2q − 1) log2[p1(1− q) + p2p] . (5.13)

If 2q = 1 then q = 1/2 and I(A,B) = 0 regardless of the values of probabilities
p1, p2.
If q 6= 1/2 then we have from (5.13) step by step:

p1q + p2(1− q) = p1(1− q) + p2q

(2q − 1)p1 = (2q − 1)p2

p1 = p2. (5.14)

Finally from (5.10) and (5.14) follows:

p1 = p2 =
1

2
,

and after substituting p1, p2 in (5.11) or (5.12) we have

γ = q log2(2q) + (1− q) log2 2(1− q). (5.15)

The capacity of the symmetric binary channel C with matrix Q is given by
the formula (5.3). Channel C transfers maximum amount of information for
stationary binary independent source with equal probabilities p1 = p2 = 1/2 of
both characters.

146 CHAPTER 5. COMMUNICATION CHANNELS

5.5 The amount of transferred information

Attach a source S = (Y ∗, µ) to the input of a channel C = (Y, Z, ν).
Remember that the probability of transmitting the word y = (y1, y2, . . . , yn) is
µ(y1, y2, . . . , yi). If the input of the channel C accepts input words from the
source S, the output of the channel C can be regarded as a source denoted by
R = R(C, S) with alphabet Z and probability function π for which it holds

π(z) = π(z1, z2, . . . , zn) =

=
∑

y∈Y n

ν(z|y)µ(y) =
∑

y1y2...yn∈Y n

ν(z1, z2, . . . , zn|y1, y2, . . . , yn)·µ(y1, y2, . . . , yn).

Together with the output source R = R(C, S) we can define a so called
double source D = ((Y × Z)∗, ψ)) depending on the source S and the channel
C which simulates a simultaneous appearing of the couples (yi, zi) of input and
output characters on both ends of the channel C.

If we identify the word (y1, z1)(y2, z2) . . . (yn, zn) with the ordered couple

(y, z) = ((y1, y2, . . . , yn), (z1, z2, . . . , zn)),

we can express the probability

ψ
(
(y1, z1)(y2, z2) . . . (yn, zn)

)
= ψ

(
(y1, y2, . . . , yn), (z1, z2, . . . , zn)

)
= ψ(y, z)

as follows:

ψ(y, z) = ψ
(
(y1, z1)(y2, z2) . . . (yn, zn)

)
= ψ

(
(y1, y2, . . . , yn), (z1, z2, . . . , zn)

)
=

= ν(z|y) · µ(y) = ν(z1, z2, . . . , zn|y1, y2, . . . , yn) · µ(y1, y2, . . . , yn).

So we will work with three sources – the input source S, the output source
R = R(C, S) and the double source D. Fixate n and denote by An, Bn the
following partitions of the set Y n × Zn:

5.5. THE AMOUNT OF TRANSFERRED INFORMATION 147

{y} × Zn = {(y1, y2, . . . , yn)} × Zn, y = (y1, y2, . . . , yn) ∈ Y n, resp.,

Y n × {z} = Y n × {(z1, z2, . . . , zn)}, z = (z1, z2, . . . , zn) ∈ Zn,

i. e.,

Bn =
{
{y× Zn} | y ∈ Y n

}
=
{
{(y1, . . . , yn)} × Zn | (y1, . . . , yn) ∈ Y n

}

An =
{
{Y n × z } | z ∈ Zn

}
=
{
Y n × {(z1, . . . , zn)} | (z1, . . . , zn) ∈ Zn

}

Further define the combined experiment Dn = An ∧Bn. It holds:

Dn = {(y, z) | y ∈ Y n, z ∈ Zn} =

= {((y1, y2, . . . , yn), (z1, z2, . . . , zn))|(y1, y2, . . . , yn) ∈ Y n, (z1, z2, . . . , zn) ∈ Zn} .

The answer about the result of the experiment Bn tells us what word
was transmitted. We cannot know this answer on the receiving end of the
channel. What we know is the result of the experiment An. Every particular
result Y n × {z1, z2, . . . , zn} of the experiment An will change the entropy
H(Bn) of the experiment Bn to the value H(Bn|Y n × {z1, z2, . . . , zn}). The
mean value of entropy of the experiment Bn after executing the experiment
An is H(Bn|An). The execution of the experiment An changes the entropy
H(Bn) to H(Bn|An). The difference H(Bn) −H(Bn|An) = I(An,Bn) is the
mean value of information about the experiment Bn obtained by executing the
experiment An.

By the formula (2.35), theorem 2.13 (page 47) it holds:

I(A,B) = H(A) +H(B)−H(A ∧ B)

For our special case:

I(An,Bn) = H(An) +H(Bn)−H(Dn)

148 CHAPTER 5. COMMUNICATION CHANNELS

We know that it holds for the entropy of input source S, output source
R(C,S) and double source D:

H(S) = limn→∞

1

n
·H(Bn)

H(R) = limn→∞

1

n
·H(An)

H(D) = limn→∞

1

n
·H(Dn)

The entropy of a source was defined as the limit of the mean value of
information per character for very long words. Similarly we can define I(S,R)
the amount of transferred information per character transferred through the
channel C as

I(S,R) = lim
n→∞

1

n
· I(An,Bn) = H(S) +H(R)−H(D).

We can see that the mean value of transferred information per character depends
not only on properties of the channel but also on properties of the input source.

5.6 Channel capacity

The following approach to the notion of channel capacity was taken from the
book [5]. Another approach with analogical results can be found in the book
[9].

The channel capacity can be defined in three ways:

• by means of the maximum amount of information transferable through
the channel

• by means of the maximum entropy of the source whose messages the
channel is capable to transfer with an arbitrary small risk of failure

• by means of the number of reliable transferred sequences

5.6. CHANNEL CAPACITY 149

We will denote these three types of capacities by C1, C2, C3.

Channel capacity C1 of the first type

The channel capacity of the first type is defined as follows:

C1(C) = sup
S

I(S,R(C,S)),

where the supremum is taken over the set of all sources with the alphabet Y .

Channel capacity C2 of the second type

Before defining the capacity of the second type we need to define what does
it mean that ”the messages from the source S can be transmitted through the
channel C with an arbitrary small risk of failure”.
In the case that input and output alphabets of the channel C are the same,
i. e., if Y = Z, we can define by several ways a real function w with domain
Y n×Zn which returns a real number w(y, z) expressing the difference of words
z and y for every pair of words y = y1y2 . . . yn ∈ Y n, z = z1z2 . . . zn ∈ Zn.
Such function is called weight function. We will use two weight functions we

and wf defined as follows:

we =

{

0 if y = z

1 otherwise

wf =
d(y, z)

n
, where d is the Hamming distance (definition 4.6, page 84).

Suppose we have a channel C = (Y, Z, ν) with a source S = (Y ∗, µ), let w
be a weight function. Then we can evaluate the quality of the transmission of
messages from the source S through the channel C by the mean value of the
weight function w for input and output words of the length n:

rn(S, C,w) =
∑

y∈Y n

∑

z∈Zn

w(y, z) · ν(z|y) · µ(y).

150 CHAPTER 5. COMMUNICATION CHANNELS

In the case of complete transmission chain we have a source SX = (X∗, φ)
whose words in alphabet X are encoded by the mapping h : X∗ → Y ∗ into
words in alphabet Y . We get the source (Y ∗, µ) where µ(y) = 0 if there is no
word x ∈ X∗ such that y = h(x), otherwise µ(y) = φ(h−1(x)). The words
from the source (Y ∗, µ) appear after transmission through the channel C on its
output as words in alphabet Z and these words are finally decoded by mapping
g : Z∗ → X∗ into the words in the original alphabet X .
The transmission of the word x ∈ Xn will be as follows:

x ∈ Xn → y = h(x) ∈ Y n → input of channel C →

→ output of channel C → z ∈ Zn → g(z) ∈ Xn

After transmitting the word x ∈ Xn we receive the word g(z) and we assess the
eventual difference of transmitted and received word as w(x, g(z)). The total
quality of transmission can be calculated:

rn(SX , h, C, g,w) =
∑

x∈Xn

∑

z∈Zn

w(x, g(z)) · ν(z|h(x)) · µ(h(x))

=
∑

x∈Xn

∑

z∈Zn

w(x, g(z)) · ν(z|h(x)) · φ(x) .

The value rn is called risk of failure. If the risk of failure is small the
transmission of words of the length n is without a large number of errors. On the
contrary, if the risk of failure is large many errors occur during the transmission
of the words of the length n.

Definition 5.2. We say that the messages from the source SX = (X,φ) can be
transmitted through the channel C = (Y, z, ν) with an arbitrary small risk
of failure with respect to given weight function w if for arbitrary ε > 0 there
exists n, and encoding and decoding functions h and g, such that

rn(SX , h, C, g,w) < ε .

5.6. CHANNEL CAPACITY 151

Definition 5.3. Define

Ce
2(C) = sup

S

H(S), Cf
2 (C) = sup

S

H(S),

where supremum is taken over the set of all sources which can be transmitted
through the channel C = (Y, z, ν) with an arbitrary small risk of failure with

respect to the weight function w = we for Ce
2 , and w = wf for Cf

2 .

Channel capacity of the third type

The definition of the channel capacity of the third type makes use of the following
notion of ε-distinguishable set of words.

Definition 5.4. The set U ⊆ Y n of input words is ε-distinguishable, if there
exists a partition {Z(u) : u ∈ U} of the set Zn such that:

ν(Z(u)|u) ≥ 1− ε.

Remember that the partition {Z(u) : u ∈ U} is a system of subsets of the
set Zn such that it holds:

1. If u, v ∈ U , u 6= w then Z(u) ∩ Z(v) = ∅

2.
⋃

u∈U Z(u) = Zn.

The number ν(Z(u)|u) is the conditional probability of the event that the
received word is an element of the set Z(u) given the word u was transmitted.
If the set U ⊆ Y n is ε-distinguishable and the received word is an element of
the set Z(u), we know that the probability of transmitting the word u is 1 − ε
provided that only words from the set U can be transmitted.

Denote by dn(C, ε) the maximum number of ε-distinguishable words from
Y n, where C is a channel, n a natural number and ε > 0.

The the third type of channel capacity C3(C) is defined

C3(C) = inf
ε

lim sup
n→∞

1

n
log2 dn(C, ε).

It can be shown that for most types of channels it holds:

C1(C) = Ce
2(C) = Cf

2 (C) = C3(C),

what implies that all channel capacities were defined purposefully and reason-
ably.

152 CHAPTER 5. COMMUNICATION CHANNELS

5.7 Shannon’s theorems

In this section we will suppose that we have a source S with entropy H(S) and
a communication channel C with capacity C(C).

Theorem 5.1 (Direct Shannon theorem). If for a stationary independent source
S and for a stationary independent channel C it holds:

H(S) < C(C),

then the messages from the source S can be transmitted through the channel C
with an arbitrary small risk of failure.

Theorem 5.2 (Reverse Shannon theorem). If for a stationary independent
source S and for a stationary independent channel C it holds:

H(S) > C(C),

then the messages from the source S cannot be transmitted through the channel
C with an arbitrary small risk of failure.

Shannon’s theorems hold for much more general types of channels and
sources – namely for ergodic sources and ergodic channels. Shannon’s theorems
show that the notions of information, entropy of source and channel capacity
were defined reasonably and these notions hang together closely.

The proofs of Shannon theorems can be found in the book [9] or, some of
them, in the book [3].

Index

σ-algebra, 11
t-perfect code, 103

alphabet, 52, 72

ball, 102
basic experiment, 34
basis of linear space, 110
block code, 73
block encoding, 73

capacity equations for a channel, 144
channel with finite memory, 138
channel with memory, 138
character, 52, 72

of an alphabet, 72
character of an alphabet, 52
check character, 105
check digit, 88
check equation, 88
check matrix of a linear code, 117
class of a word according to a code, 125
code, 72
code alphabet, 72
code character, 72
code decoding, 105
code with check digit

over a group, 94
code word, 72
column matrix, 112

communication channel, 139
commutative ring, 108
complete decoding of a code, 105
complete mapping, 96
conditional entropy, 42, 45
cylinder, 63

decoding of code, 105
Dieder group, 97
discrete random process, 52
distinguishable set of words, 151
doubling code, 85
dual code, 120

EAN-13 code, 89
elementary cylinder, 64
empty word, 52
encoding, 72
encoding

of information characters,
105

entropy of a source, 57
entropy of an experiment, 23
equivalent codes, 115
error word, 121
even-parity code, 85
event, 10
experiment, 22
extended Hamming code, 133

factor ring modulo p, 109

154 INDEX

field, 108
finite dimensional linear space, 110

generating matrix of a code, 113
geometric code, 91
Golay code, 134
group, 107

Hamming code, 130
Hamming distance, 84
Hamming metric, 84
Hamming weight, 121

independent events, 13
independent experiments, 46
information, 9, 20
information character, 105
information ratio, 107
information source, 64
ISBN code, 90

joint experiment, 45

Kraft’s inequality, 75

length of a word, 52, 72
linear (n, k)-code, 112
linear space, 110
linearly independent vectors, 110

mapping
ergodic, 65
measurable, 65
measure preserving, 65
mixing, 65

matrix of transition
probabilities, 140

mean code word length, 77
mean value of information I(A,B)

about experiment B
in experiment A, 47

memoryless channel, 139
memoryless noiseless channel, 138
metric, 84
minimum distance of block code, 84
mutual information

of experiments, 47

noiseless channel, 138
noncode word, 72

orthogonal vectors, 111

partial decoding of a code, 105
prefix code, 74
prefix encoding, 74
prefix of a word, 74
probability of the word, 53
product of sources, 60

realization of random process, 52
repeating code, 86
risk of failure, 150

sample space, 10, 11
scalar product of vectors, 111
sequence of (informational)

independent events, 18
set

T -invariant, 65
set of words

of an alphabet, 72
Shannon-Hartley formula, 20
shortest n-ary code, 78
shortest n-ary encoding, 78
Slepian’s table, 128
source, 53, 64

independent, 54
memoryless, 54
stationary, 54, 67

source alphabet, 52, 72

INDEX 155

source character, 52, 72
source of information, 53
standard decoding

of a linear code, 126
stationary

independent channel, 140
stationary memoryless channel, 140
statistically independent

experiments, 46
symmetric binary channel, 142
syndrome of the word, 122
systematic code, 106

transition probabilities, 140
triangle inequality, 84
two dimensional

parity check code, 104
two-out-of-five code, 84

UIC railway car number, 86
uniquely decodable encoding, 73
universal sample space, 10, 11

vector, 110
vector space, 110

weight function, 149
word, 52
word of an alphabet, 72
word of the length n, 52

Bibliography

[1] Adámek, J.: Kódováńı, SNTL Praha, 1989

[2] Berlehamp, R., R.: Algebraic Coding Theory, McGraw-Hill, New York,
1968 (Russian translation: Algebrajicheskaja teorija kodirovanija, Mir,
Moskva, 1971)

[3] Billingsley, P.: Ergodic Theory and Information, J. Willey and Sons,
Inc., New York, London, Sydney, 1965 (Russian translation: Ergodich-
eskaja teorija i informacija, Mir, Moskva, 1969)

[4] Černý, J., Brunovský, P.: A Note on Information Without Probabil-
ity, Information and Control, pp. 134 - 144, Vol. 25, No. 2, June, 1974

[5] Černý, J.: Entropia a informácia v kybernetike, Alfa – vydavatělstvo
technickej a ekonomickej literatúry, Bratislava, 1981

[6] Halmos, P., R.: Measure Theory (Graduate Texts in Mathematics),
Springer Verlag,

[7] Hankerson, D., Harris, G.,A., Johnson, O.,D., Jr.: Introduction to
Information Theory and Data Compression, CRC Press LLC, 1998, ISBN
0-8493-3985-5

[8] Jaglom, A., M., Jaglom, I., M.: Pravděpodobnost a informace, SAV,
Praha, 1964

[9] Kolesnik, V., D., Poltyrev, G., S.,: Kurs teorii informacii, Nauka,
Moskva, 1982

[10] Neubrunn, T., Riečan, B.,: Miera a integrál, Veda, Bratislava, 1981

[11] Schulz, R., H.: Codierungstheorie, Eine Einfuhrung, Vieweg, Wies-
baden 1991, ISBN 3-528-06419-6

