Acyclic graphs, trees and spanning trees

Stanislav Palúch

Fakulta riadenia a informatiky, Žilinská univerzita

20. apríla 2016

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita

Acyclic graphs, trees and spanning trees

Definition

Cycle (directed cycle, quasi-cycle) is non trivial closed walk (directed walk, quasi-walk) in which every vertex but the first and the last appears at most once.

Definition

An acyclic graph is a graph that has no cycles.

Definition

A tree is a connected acyclic graph.

Remark

Trivial graph is a tree.

Remark

Definition

An acyclic graph is a graph that has no cycles.

Definition

A tree is a connected acyclic graph.

Remark

Trivial graph is a tree.

Remark

Definition

An acyclic graph is a graph that has no cycles.

Definition

A tree is a connected acyclic graph.

Remark

Trivial graph is a tree.

Remark

Definition

An acyclic graph is a graph that has no cycles.

Definition

A tree is a connected acyclic graph.

Remark

Trivial graph is a tree.

Remark

Theorem

Let G = (V, H) be a tree with at least two vertices. Then the set V contains at least two vertices with degree 1.

Proof.

Let

$$(v_1, \{v_1, v_2\}, v_2, \dots, \{v_{k-1}, v_k\}, v_k)$$
 (1)

be a path in treee G with largest number of edges. We show that $deg(v_k) = 1$.

Obr.: If $\deg(v_k) > 1$,

then there exists at least one edge (dashed) incident with v_k , creating one of situations a) or b).

A nontrivial tree contains at least 2 vertices with degree 1

Theorem

Let G = (V, H) be a tree with at least two vertices. Then the set V contains at least two vertices with degree 1.

Proof.

Let

$$(v_1, \{v_1, v_2\}, v_2, \dots, \{v_{k-1}, v_k\}, v_k)$$
(1)

be a path in treee G with largest number of edges. We show that $deg(v_k) = 1$.

$$\begin{array}{cccc} & & & & \\ \hline v_1 & v_2 & v_i \equiv v_l & v_k & v_1 & v_2 & v_k & v_l \\ a \end{pmatrix} \end{array}$$

Obr.: If deg $(v_k) > 1$,

then there exists at least one edge (dashed) incident with v_k , creating one of situations a) or b).

Properties of trees

Theorem

Following assertions are equivalent:

- a) G = (V, H) is a tree.
- b) There exists exactly one u−v path in graph G = (V, H) for every u, v ∈ V.
- c) Graph G = (V, H) is connected and every edge h ∈ H is a bridge in G.
- d) Graph G = (V, H) is connected and |H| = |V| 1.
- e) Graph G = (V, H) is acyclic and |H| = |V| 1.

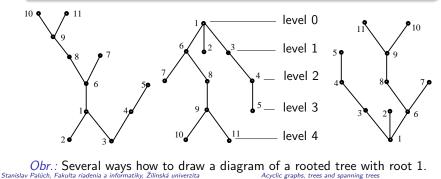
Koreňový tree

Definition

A rooted tree is a tree G = (V, H) having a distinguished vertex $k \in V$, called the root.

The level of vertex u or the depth of a vertex u in rooted tree G = (V, H) with root k is the length (number of edges) of (unique) k-u paht.

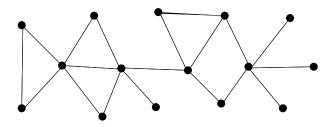
The height of the rooted tree G = (V, H) is the maximum of levels of all vertices of the rooted tree G.



Definition

Let the tree $T = (V_T, H_T)$ is a subgraph of graph G = (V, H). We will say that the edge $h = \{u, v\} \in H$ is the border edge, if $u \in V_T$ and $v \notin V_T$.

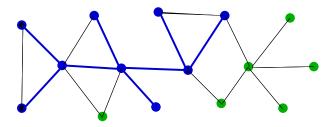
Let $h = \{u, v\}$ be a border edge, $u \in V_T$, $v \notin V_T$. We will say that u je the included vertex, v is the free vertex of border edge h.



Definition

Let the tree $T = (V_T, H_T)$ is a subgraph of graph G = (V, H). We will say that the edge $h = \{u, v\} \in H$ is the border edge, if $u \in V_T$ and $v \notin V_T$.

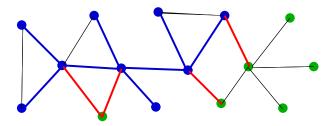
Let $h = \{u, v\}$ be a border edge, $u \in V_T$, $v \notin V_T$. We will say that u je the included vertex, v is the free vertex of border edge h.



Definition

Let the tree $T = (V_T, H_T)$ is a subgraph of graph G = (V, H). We will say that the edge $h = \{u, v\} \in H$ is the border edge, if $u \in V_T$ and $v \notin V_T$.

Let $h = \{u, v\}$ be a border edge, $u \in V_T$, $v \notin V_T$. We will say that u je the included vertex, v is the free vertex of border edge h.



Algorithm

Depth-First Search.

• Step 1. Initialization.

- **Step 2.** If T does not contain all vertices of graph GOTO Step 3. otherwise STOP.
- Step 3. Find a border line h = {u, v} in graph G with tree T with maximal label p(u) of included vertex u. If such an edge does not exist STOP. Otherwise continue in Step 4.
- Step 4. Set $T := T \cup \{h\} \cup \{v\}, \quad k := k + 1, \quad p(v) := k.$ GOTO Step 2.

Algorithm

Depth-First Search.

• Step 1. Initialization.

- **Step 2.** If *T* does not contain all vertices of graph GOTO Step 3. otherwise STOP.
- Step 3. Find a border line h = {u, v} in graph G with tree T with maximal label p(u) of included vertex u. If such an edge does not exist STOP. Otherwise continue in Step 4.
- Step 4. Set $T := T \cup \{h\} \cup \{v\}, \quad k := k + 1, \quad p(v) := k.$ GOTO Step 2.

Algorithm

Depth-First Search.

• Step 1. Initialization.

- **Step 2.** If *T* does not contain all vertices of graph GOTO Step 3. otherwise STOP.
- Step 3. Find a border line h = {u, v} in graph G with tree T with maximal label p(u) of included vertex u. If such an edge does not exist STOP. Otherwise continue in Step 4.
- Step 4. Set $T := T \cup \{h\} \cup \{v\}, \quad k := k + 1, \quad p(v) := k.$ GOTO Step 2.

Algorithm

Depth-First Search.

• Step 1. Initialization.

- **Step 2.** If *T* does not contain all vertices of graph GOTO Step 3. otherwise STOP.
- Step 3. Find a border line h = {u, v} in graph G with tree T with maximal label p(u) of included vertex u. If such an edge does not exist STOP. Otherwise continue in Step 4.
- Step 4. Set $T := T \cup \{h\} \cup \{v\}$, k := k + 1, p(v) := k. GOTO Step 2.

Algorithm

Breadth-First Search.

- Step 1. Initialization. Let T be a trivial tree containing single vertex v ∈ V. Set p(v) := 1, k := 1.
- **Step 2.** If T does not contain all vertices of graph GOTO Step 3. otherwise STOP.
- Step 3. Find a border line h = {u, v} in graph G with tree T with minimal p(u) of included vertex u.
 If such an edge does not exist STOP.
 Otherwise continue in Step 4.
- Step 4. Set $T := T \cup \{h\} \cup \{v\}, \quad k := k + 1, \quad p(v) := k.$ GOTO Step 2.

Algorithm

Breadth-First Search.

- Step 1. Initialization. Let T be a trivial tree containing single vertex v ∈ V. Set p(v) := 1, k := 1.
- **Step 2.** If *T* does not contain all vertices of graph GOTO Step 3. otherwise STOP.

Step 3. Find a border line h = {u, v} in graph G with tree T with minimal p(u) of included vertex u.
 If such an edge does not exist STOP.
 Otherwise continue in Step 4.

• Step 4. Set $T := T \cup \{h\} \cup \{v\}, \quad k := k + 1, \quad p(v) := k.$ GOTO Step 2.

Algorithm

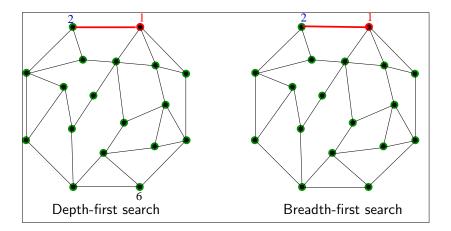
Breadth-First Search.

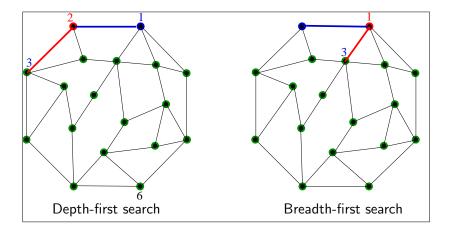
- Step 1. Initialization. Let T be a trivial tree containing single vertex v ∈ V. Set p(v) := 1, k := 1.
- **Step 2.** If *T* does not contain all vertices of graph GOTO Step 3. otherwise STOP.
- Step 3. Find a border line h = {u, v} in graph G with tree T with minimal p(u) of included vertex u.
 If such an edge does not exist STOP.
 Otherwise continue in Step 4.
- Step 4. Set $T := T \cup \{h\} \cup \{v\}, \quad k := k + 1, \quad p(v) := k.$ GOTO Step 2.

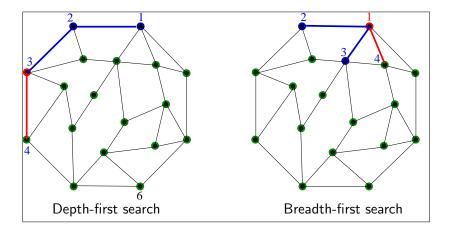
Algorithm

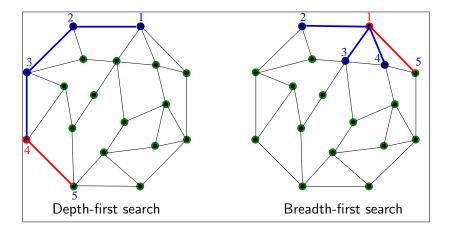
Breadth-First Search.

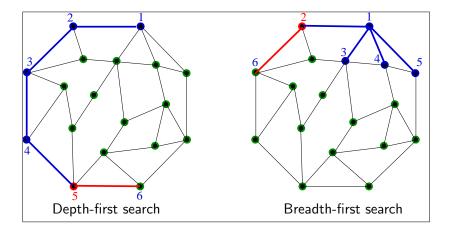
- Step 1. Initialization. Let T be a trivial tree containing single vertex v ∈ V. Set p(v) := 1, k := 1.
- **Step 2.** If *T* does not contain all vertices of graph GOTO Step 3. otherwise STOP.
- Step 3. Find a border line h = {u, v} in graph G with tree T with minimal p(u) of included vertex u.
 If such an edge does not exist STOP.
 Otherwise continue in Step 4.
- Step 4. Set $T := T \cup \{h\} \cup \{v\}$, k := k + 1, p(v) := k. GOTO Step 2.

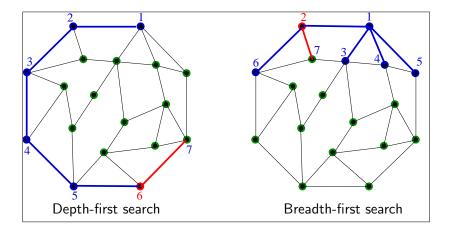


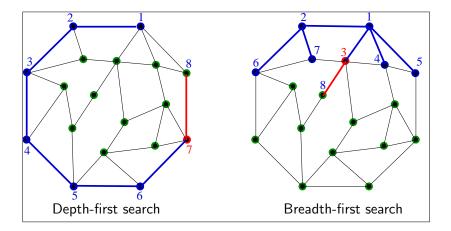


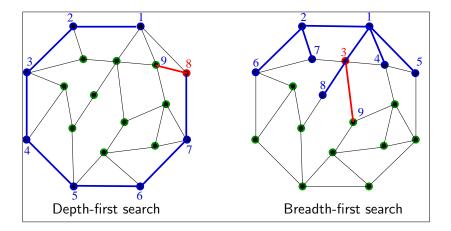


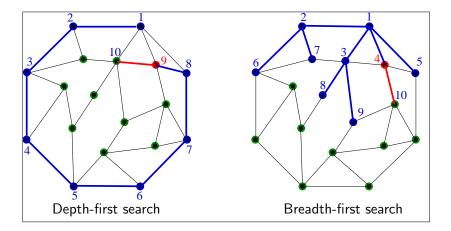


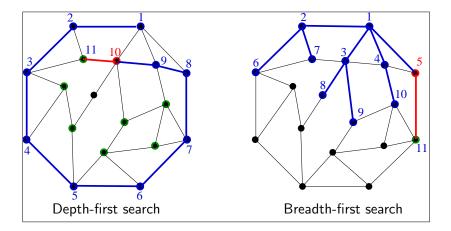


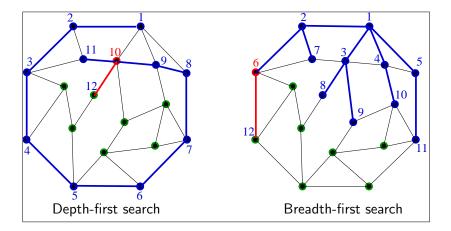


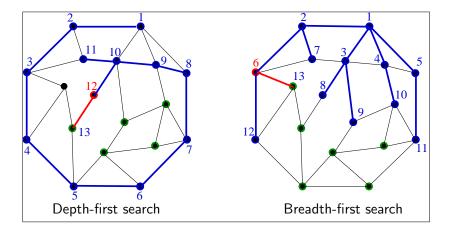


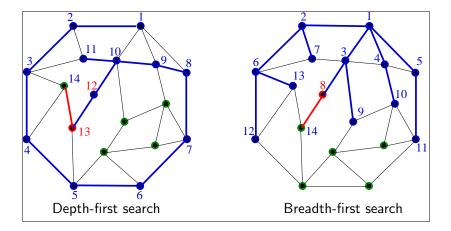


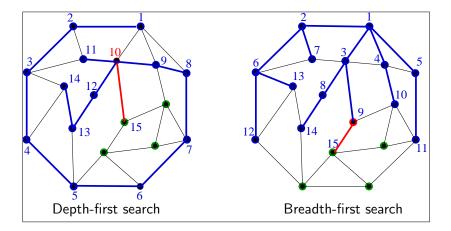


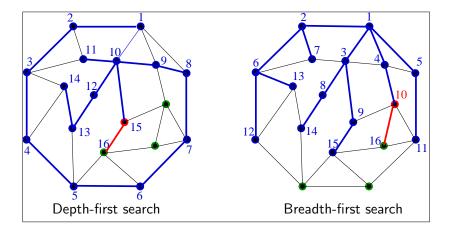




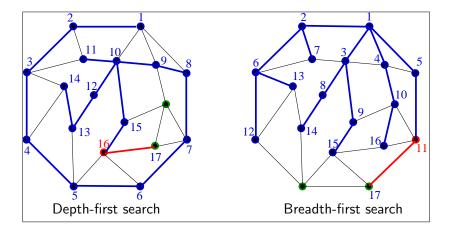




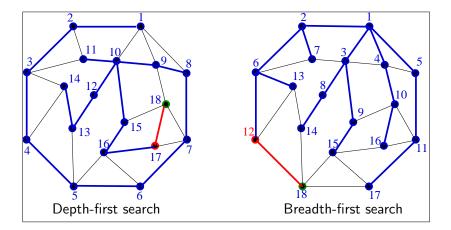




Depth-first search and breadth-first search



Depth-first search and breadth-first search



Minimum cost and Maximum cos spanning tree

Definition

A spanning tree of a connected graph G = (V, H) is such spanning subgraph of G that is a tree.

Let G = (V, H, c) be an edge weighted graph, K a spanning tree of G. The cost c(K) of spanning tree K is the sum of edge weights of all edges of K.

The minimum cost spanning tree of graph *G* is the spanning tree of *G* having the minimum cost.

The maximum cost spanning tree of graph *G* is the spanning tree of *G* having the maximum cost.

Minimum cost and Maximum cos spanning tree

Definition

A spanning tree of a connected graph G = (V, H) is such spanning subgraph of G that is a tree.

Let G = (V, H, c) be an edge weighted graph, K a spanning tree of G. The cost c(K) of spanning tree K is the sum of edge weights of all edges of K.

The minimum cost spanning tree of graph *G* is the spanning tree of *G* having the minimum cost.

The maximum cost spanning tree of graph G is the spanning tree of G having the maximum cost.

Algorithm

Kruskal's algorithm I. to find minimum (maximum) cost spanning tree of an edge weighted graph G = (V, H, c).

- Step 1. Let K = (V, E) be a spanning subgraph of G with E = Ø. Arrange all edges of H in their increasing (decreasing) order of weight into sequence P.
- Step 2. Let {u, v} be the first edge in sequence P.
 Exclude the edge {u, v} from the sequence P. If the edge {u, v} does not create a cycle with till now chosen edges of the set E then insert the edge {u, v} into E, i.e. set E = E ∪ {{u, v}.
- Step 3. If the number of chosen edges is equal to |V| − 1 or if the sequence P is empty, then STOP. Otherwise GOTO Step 2.

Algorithm

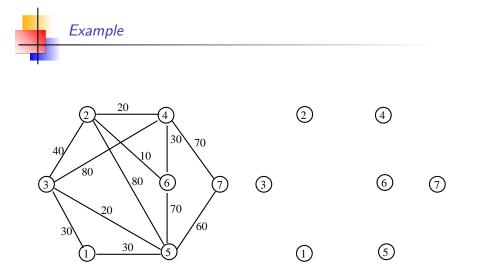
Kruskal's algorithm I. to find minimum (maximum) cost spanning tree of an edge weighted graph G = (V, H, c).

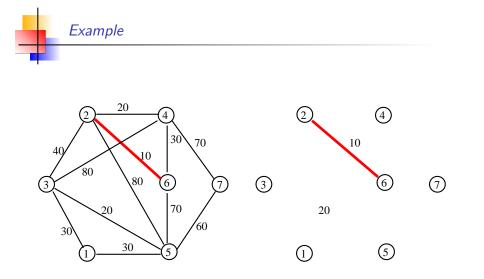
- Step 1. Let K = (V, E) be a spanning subgraph of G with E = Ø. Arrange all edges of H in their increasing (decreasing) order of weight into sequence P.
- Step 2. Let {u, v} be the first edge in sequence P.
 Exclude the edge {u, v} from the sequence P. If the edge {u, v} does not create a cycle with till now chosen edges of the set E then insert the edge {u, v} into E, i.e. set E = E ∪ {{u, v}.
- Step 3. If the number of chosen edges is equal to |V| − 1 or if the sequence P is empty, then STOP. Otherwise GOTO Step 2.

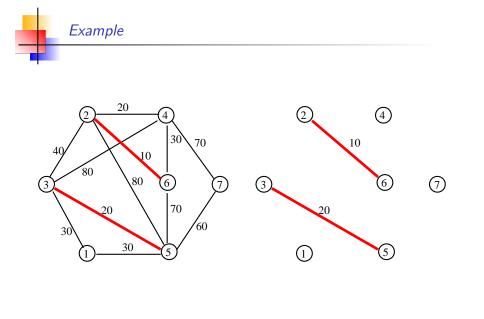
Algorithm

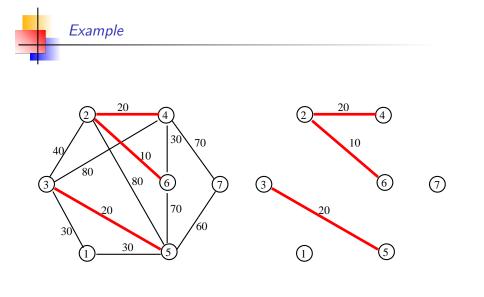
Kruskal's algorithm I. to find minimum (maximum) cost spanning tree of an edge weighted graph G = (V, H, c).

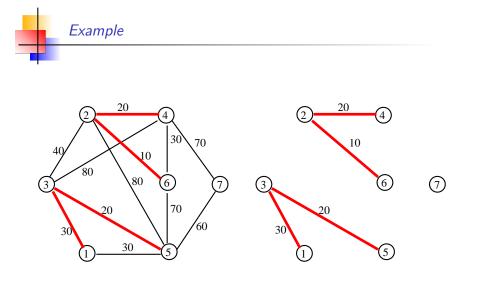
- Step 1. Let K = (V, E) be a spanning subgraph of G with E = Ø. Arrange all edges of H in their increasing (decreasing) order of weight into sequence P.
- Step 2. Let {u, v} be the first edge in sequence P.
 Exclude the edge {u, v} from the sequence P. If the edge {u, v} does not create a cycle with till now chosen edges of the set E then insert the edge {u, v} into E, i.e. set E = E ∪ {{u, v}.
- Step 3. If the number of chosen edges is equal to |V| 1 or if the sequence \mathcal{P} is empty, then STOP. Otherwise GOTO Step 2.

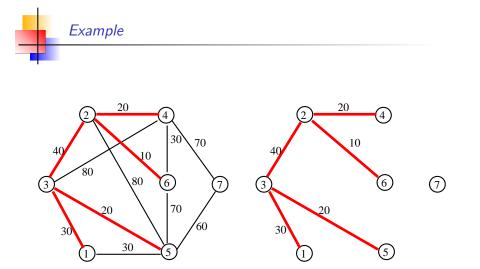


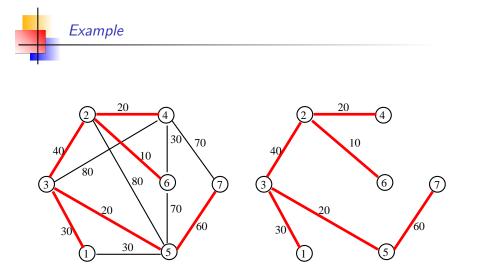












Algorithm

Kruskal's algorithm II. to find minimum (maximum) cost spanning tree of an edge weighted graph G = (V, H, c).

- Step 1.Let K = (V, E) be a spanning subgraph of G with E = Ø. Arrange all edges of H in their increasing (decreasing) order of weight into sequence P.
- Step 2. Set label k(i) = i for every vertex $i \in V$.
- Step 3. Let $\{u, v\}$ be the first edge in sequence \mathcal{P} . Exclude the edge $\{u, v\}$ from the sequence \mathcal{P} . If $k(u) \neq k(v)$ then insert the edge $\{u, v\}$ into E, i.e. set $E = E \cup \{\{u, v\}\}$. and $\forall i \in V$ such that k(i) = k(v) set k(i) := k(u)
- Step 4. If the number of chosen edges is equal to |V| − 1 or if the sequence P is empty, then STOP. Otherwise GOTO Step 3.

b

Algorithm

Kruskal's algorithm II. to find minimum (maximum) cost spanning tree of an edge weighted graph G = (V, H, c).

- Step 1.Let K = (V, E) be a spanning subgraph of G with E = Ø. Arrange all edges of H in their increasing (decreasing) order of weight into sequence P.
- Step 2. Set label k(i) = i for every vertex $i \in V$.
- Step 3. Let $\{u, v\}$ be the first edge in sequence \mathcal{P} . Exclude the edge $\{u, v\}$ from the sequence \mathcal{P} . If $k(u) \neq k(v)$ then insert the edge $\{u, v\}$ into E, i.e. set $E = E \cup \{\{u, v\}\}$. and $\forall i \in V$ such that k(i) = k(v) set k(i) := k(u)
- Step 4. If the number of chosen edges is equal to |V| − 1 or if the sequence P is empty, then STOP. Otherwise GOTO Step 3.

6

Algorithm

Kruskal's algorithm II. to find minimum (maximum) cost spanning tree of an edge weighted graph G = (V, H, c).

- Step 1.Let K = (V, E) be a spanning subgraph of G with E = Ø. Arrange all edges of H in their increasing (decreasing) order of weight into sequence P.
- Step 2. Set label k(i) = i for every vertex $i \in V$.
- Step 3. Let $\{u, v\}$ be the first edge in sequence \mathcal{P} . Exclude the edge $\{u, v\}$ from the sequence \mathcal{P} . If $k(u) \neq k(v)$ then insert the edge $\{u, v\}$ into E, i.e. set $E = E \cup \{\{u, v\}\}$. and $\forall i \in V$ such that k(i) = k(v) set k(i) := k(u)
- Step 4. If the number of chosen edges is equal to |V| − 1 or if the sequence P is empty, then STOP. Otherwise GOTO Step 3.

Algorithm

Kruskal's algorithm II. to find minimum (maximum) cost spanning tree of an edge weighted graph G = (V, H, c).

- Step 1.Let K = (V, E) be a spanning subgraph of G with E = Ø. Arrange all edges of H in their increasing (decreasing) order of weight into sequence P.
- Step 2. Set label k(i) = i for every vertex $i \in V$.
- Step 3. Let $\{u, v\}$ be the first edge in sequence \mathcal{P} . Exclude the edge $\{u, v\}$ from the sequence \mathcal{P} . If $k(u) \neq k(v)$ then insert the edge $\{u, v\}$ into E, i.e. set $E = E \cup \{\{u, v\}\}$. and $\forall i \in V$ such that k(i) = k(v) set k(i) := k(u)
- Step 4. If the number of chosen edges is equal to |V| − 1 or if the sequence P is empty, then STOP. Otherwise GOTO Step 3.

Sequence \mathcal{P} containing all edges of H in their increasing order of weight:

{2,6}	{2,4}	{3,5}	{1,3}	$\{1,5\}$	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

Edge into spanning tree	1	2	3	4	5	6	7
			k(v)			
-	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}		2		2		2	7
		2		2		2	7
{1,3}		2		2		2	7
{2,3}							7
{5,7}							

Sequence \mathcal{P} containing all edges of H in their increasing order of weight:

{2,6}	{2,4}	{3,5}	{1,3}	$\{1,5\}$	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

Edge	{ <i>u</i> ,	$v\} =$	$\{2, 6\}$
k(2) =	= 2,	k(6)	= 6

 $k(2) \neq k(6) \Rightarrow$ insert {2,6} into spanning tree

Edge into spanning tree	1	2	3	4	5	6	7
			k(v)			
-	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}	1	2	3	2	5	2	7
		2		2		2	7
{1,3}		2		2		2	7
{2,3}							7
{5,7}							

Sequence \mathcal{P} containing all edges of H in their increasing order of weight:

{2,6}	{2,4}	{3,5}	{1,3}	{1,5}	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

Edge $\{u, v\} = \{2, 4\}$	
k(2) = 2, k(4) = 4	

 $k(2) \neq k(4) \Rightarrow$ insert {2,4} into spanning tree

Edge into spanning tree	1	2	3	4	5	6	7
			k(v)			
-	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}	1	2	3	2	5	2	7
{3,5}	1	2	3	2	3	2	7
{1,3}		2		2		2	7
{2,3}							7
{5,7}							

Sequence \mathcal{P} containing all edges of H in their increasing order of weight:

{2,6}	{2,4}	{3,5}	{1,3}	{1,5}	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

Edge $\{u, v\} = \{3, 5\}$	
k(3) = 3, k(5) = 5	

 $k(3) \neq k(5) \Rightarrow$ insert {3,5} into spanning tree

Edge into spanning tree	1	2	3	4	5	6	7
			k(v)			
-	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}	1	2	3	2	5	2	7
{3,5}	1	2	3	2	3	2	7
{1,3}	1	2	1	2	1	2	7
{2,3}							7
{5,7}							

Sequence \mathcal{P} containing all edges of H in their increasing order of weight:

{2,6}	{2,4}	{3,5}	{1,3}	{1,5}	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

	Edge into spanning tree	1	2	3	4	5	6	7		
Edge $\{u, v\} = \{1, 3\}$	k(v)									
$k(1) = 1, \ k(3) = 3$	-	1	2	3	4	5	6	7	I)	
	{2,6}	1	2	3	4	5	2	7	ĺ	
$k(1) \neq k(3) \Rightarrow$	{2,4}	1	2	3	2	5	2	7		
insert $\{1,3\}$ into	{3,5}	1	2	3	2	3	2	7		
spanning tree	{1,3}	1	2	1	2	1	2	7		
	{2,3}							7		
	{5,7}									

Sequence \mathcal{P} containing all edges of H in their increasing order of weight:

{2,6}	{2,4}	{3,5}	$\{1,3\}$	$\{1,5\}$	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

Edge into spanning tree	1	2	3	4	5	6	7
			k(v)			
-	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}	1	2	3	2	5	2	7
{3,5}	1	2	3	2	3	2	7
{1,3}	1	2	1	2	1	2	7
{2,3}							7
{5,7}							

Edge
$$\{u, v\} = \{1, 5\}$$

 $k(1) = 1, k(5) = 1$

 $k(1) = k(5) \Rightarrow$ throw away $\{1,5\}$

Sequence \mathcal{P} containing all edges of H in their increasing order of weight:

{2,6}	{2,4}	{3,5}	$\{1,3\}$	$\{1,5\}$	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

	Edge into spanning tree	1	2	3	4	5	6	7
l				k(v)			
[-	1	2	3	4	5	6	7
ĺ	{2,6}	1	2	3	4	5	2	7
	{2,4}	1	2	3	2	5	2	7
	{3,5}	1	2	3	2	3	2	7
	{1,3}	1	2	1	2	1	2	7
	{2,3}	1	1	1	1	1	1	7
	{5,7}							

Edge
$$\{u, v\} = \{4, 6\}$$

 $k(4) = 2, k(6) = 2$

 $k(4) = k(6) \Rightarrow$ throw away $\{4, 6\}$

Sequence \mathcal{P} containing all edges of H in their increasing order of weight:

{2,6}	{2,4}	{3,5}	$\{1,3\}$	$\{1,5\}$	{4,6}	{2,3}	{5,7}	{4,7}	{5,6}	{2,5}	{3,4}
10	20	20	30	30	30	40	60	70	70	80	80

Edge $\{u, v\} = \{2, 3\}$	
k(2) = 2, k(3) = 1	

 $k(2) \neq k(3) \Rightarrow$ insert {2,3} into spanning tree

Edge into spanning tree	1	2	3	4	5	6	7
			k(v)			
-	1	2	3	4	5	6	7
{2,6}	1	2	3	4	5	2	7
{2,4}	1	2	3	2	5	2	7
{3,5}	1	2	3	2	3	2	7
{1,3}	1	2	1	2	1	2	7
{2,3}	1	1	1	1	1	1	7
{5,7}	1	1	1	1	1	1	1

Sequence \mathcal{P} containing all edges of H in their increasing order of weight:



1	Edge into spanning tree	1	2	3	4	5	6	7
}				k(v)			
	-	1	2	3	4	5	6	7
	{2,6}	1	2	3	4	5	2	7
	{2,4}	1	2	3	2	5	2	7
	{3,5}	1	2	3	2	3	2	7
	{1,3}	1	2	1	2	1	2	7
	{2,3}	1	1	1	1	1	1	7
	{5,7}	1	1	1	1	1	1	1

Edge $\{u, v\} = \{5, 7\}$ k(5) = 1, k(7) = 7

 $k(5) \neq k(7) \Rightarrow$ insert {5,7} into spanning tree

Definition

Let G = (V, H, c) be a ege weighted graph where edge cost c(h) > 0 of an edge $h \in H$ means the capacity of the edge h.

Capacity $c(\mu(u, v))$ of u-v path (walk, trail, etc.) $\mu(u, v)$ is defined as

 $c(\mu(u,v)) = \min\{c(h) \mid h \in \mu(u,v)\}.$

Definition

We will say that u-v path $\mu(u, v)$ in graph G = (V, H, c) is maximum capacity u-v path if the path $\mu(u, v)$ has largest capacitu of all u-v paths in G.

Remark

The maximum capacity path problem is also known as the bottleneck shortest path problem or the widest path problem.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita

Definition

Let G = (V, H, c) be a ege weighted graph where edge cost c(h) > 0 of an edge $h \in H$ means the capacity of the edge h.

Capacity $c(\mu(u, v))$ of u-v path (walk, trail, etc.) $\mu(u, v)$ is defined as

 $c(\boldsymbol{\mu}(u, \boldsymbol{\nu})) = \min\{c(h) \mid h \in \boldsymbol{\mu}(u, \boldsymbol{\nu})\}.$

Definition

We will say that u-v path $\mu(u, v)$ in graph G = (V, H, c) is maximum capacity u-v path if the path $\mu(u, v)$ has largest capacitu of all u-v paths in G.

Remark

The maximum capacity path problem is also known as the bottleneck shortest path problem or the widest path problem.

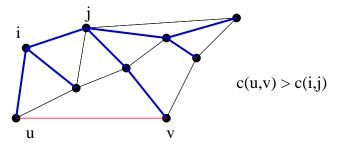
Theorem

Let K be a maximum capacity spanning tree in a connected edge weighted graph G = (V, H, c), let $\{u, v\} \in H$ be such an edge of graph G which is not an element of edge set of K. Let $\mu(u, v)$ be a (unique) u-v path in spanning tree K. Then the capacity of the path $\mu(u, v)$ is greater or equal to the capacity of edge $\{u, v\}$, i. e.

 $c(\mu(u,v)) \geq c(u,v).$

PROOF.

Let us have a maximum cost spanning tree \mathcal{K} and let there exists an edge $\{u, v\}$ such that capacity of u-v path along edges of spanning tree is less than c(u, v)).



Spanning tree \mathcal{K} blue, edge $h = \{u, v\}$ (red)

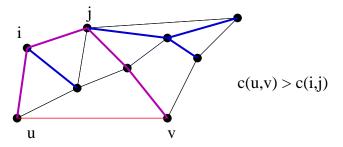
u-v path along edges of spanning tree (violet) with less capacity than c(u, v)Then there exists and edge $\{i, j\}$ of this path such that c(u, v) > c(i, j)By replacing of edge $\{i, j\}$ by edge $\{u, v\}$ we get a spanning tree with greater cost – contradiction with assuption that \mathcal{K} was a maximum cost spanning tree.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita

Acyclic graphs, trees and spanning trees

PROOF.

Let us have a maximum cost spanning tree \mathcal{K} and let there exists an edge $\{u, v\}$ such that capacity of u-v path along edges of spanning tree is less than c(u, v)).

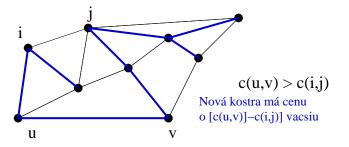


Spanning tree ${\mathcal K}$ blue, edge $h=\{u,v\}$ (red)

u-v path along edges of spanning tree (violet) with less capacity than c(u, v)Then there exists and edge $\{i, j\}$ of this path such that c(u, v) > c(i, j)y replacing of edge $\{i, j\}$ by edge $\{u, v\}$ we get a spanning tree with greater cost contradiction with assupption that \mathcal{K} was a maximum cost spanning tree.

PROOF.

Let us have a maximum cost spanning tree \mathcal{K} and let there exists an edge $\{u, v\}$ such that capacity of u-v path along edges of spanning tree is less than c(u, v)).



Spanning tree \mathcal{K} blue, edge $h = \{u, v\}$ (red) *u*-*v* path along edges of spanning tree (violet) with less capacity than c(u, v)Then there exists and edge $\{i, j\}$ of this path such that c(u, v) > c(i, j)By replacing of edge $\{i, j\}$ by edge $\{u, v\}$ we get a spanning tree with greater cost – contradiction with assupption that \mathcal{K} was a maximum cost spanning tree.

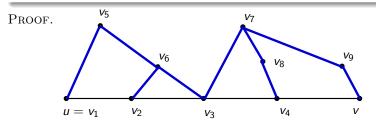
Theorem

Let K be a maximum cost spanning tree in a connected edge weighted graph G = (V, H, c). Then for all $u, v \in V$ the (unique) u-v path in K is a maximum capacity u-v path in G.

Proof.

Theorem

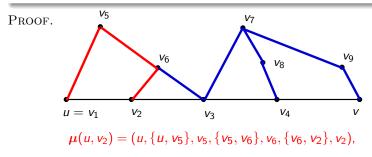
Let K be a maximum cost spanning tree in a connected edge weighted graph G = (V, H, c). Then for all $u, v \in V$ the (unique) u-v path in K is a maximum capacity u-v path in G.



Maximum capacity path: $\mu(u, v) = (u, \{u \equiv v_1, v_2\}, v_2, \{v_2, v_3\}, v_3, \{v_3, v_4\}, v_4, \{v_4, v\}, v),$

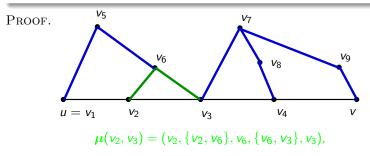
Theorem

Let K be a maximum cost spanning tree in a connected edge weighted graph G = (V, H, c). Then for all $u, v \in V$ the (unique) u-v path in K is a maximum capacity u-v path in G.



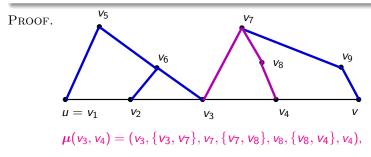
Theorem

Let K be a maximum cost spanning tree in a connected edge weighted graph G = (V, H, c). Then for all $u, v \in V$ the (unique) u-v path in K is a maximum capacity u-v path in G.



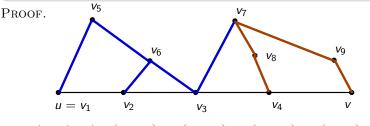
Theorem

Let K be a maximum cost spanning tree in a connected edge weighted graph G = (V, H, c). Then for all $u, v \in V$ the (unique) u-v path in K is a maximum capacity u-v path in G.



Theorem

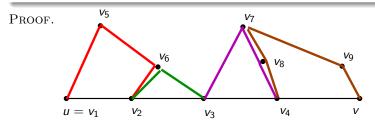
Let K be a maximum cost spanning tree in a connected edge weighted graph G = (V, H, c). Then for all $u, v \in V$ the (unique) u-v path in K is a maximum capacity u-v path in G.



 $\mu(v_4, v) = (v_4, \{v_4, v_8\}, v_8, \{v_8, v_7\}, v_7, \{v_7, v_9\}, v_9, \{v_9, v\}, v).$

Theorem

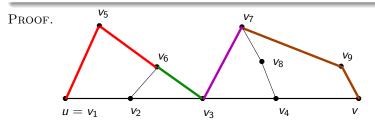
Let K be a maximum cost spanning tree in a connected edge weighted graph G = (V, H, c). Then for all $u, v \in V$ the (unique) u-v path in K is a maximum capacity u-v path in G.



u-v sled po hranách kostry s priepustnosťou \geq než priepustnosť cesty $\mu(u,v)$

Theorem

Let K be a maximum cost spanning tree in a connected edge weighted graph G = (V, H, c). Then for all $u, v \in V$ the (unique) u–v path in K is a maximum capacity u–v path in G.



Maximum capacity path: $\mu(u, v) = (u, \{u \equiv v_1, v_2\}, v_2, \{v_2, v_3\}, v_3, \{v_3, v_4\}, v_4, \{v_4, v\}, v),$ Maximum capacity path along edges of spanning tree

Maximum capacity u-v path algorithm

Algorithm

Maximum capacity u-v path algorithm in a connected edge weighted graph G = (V, H, c).

- Step 1. Create a maximum cost spanning tree K in graph G.
- Step 2. Find unique u-v path in spanning tree K.
 This u-v path along edges of K is a maximum capacity u-v path in graph G.

Remark

Last algorithm wil find a maximum capacity u-v path, but this path is not in many cases optimal from the point of view of traveled distance. In the case that we are looking for maximum capacity shortest u-v path we need be given in corresponding graph (together with capacity) additional edge cost representing the length of edges.

Maximum capacity u-v path algorithm

Algorithm

Maximum capacity u-v path algorithm in a connected edge weighted graph G = (V, H, c).

- Step 1. Create a maximum cost spanning tree K in graph G.
- Step 2. Find unique u-v path in spanning tree K.
 This u-v path along edges of K is a maximum capacity u-v path in graph G.

Remark

Last algorithm wil find a maximum capacity u-v path, but this path is not in many cases optimal from the point of view of traveled distance. In the case that we are looking for maximum capacity shortest u-v path we need be given in corresponding graph (together with capacity) additional edge cost representing the length of edges.

Maximum capacity u-v path algorithm

Algorithm

Maximum capacity u-v path algorithm in a connected edge weighted graph G = (V, H, c).

- Step 1. Create a maximum cost spanning tree K in graph G.
- Step 2. Find unique u-v path in spanning tree K. This u-v path along edges of K is a maximum capacity u-v path

in graph G.

Remark

Last algorithm wil find a maximum capacity u-v path, but this path is not in many cases optimal from the point of view of traveled distance. In the case that we are looking for maximum capacity shortest u-v path we need be given in corresponding graph (together with capacity) additional edge cost representing the length of edges.

Maximum capacity u-v shortest path algorithm

Algorithm

Maximum capacity u-v shortest path algorithm in a connected edge weighted graph G = (V, H, c, d), where c(h) je the capacity and d(h) is the length of edge $h \in H$.

• Step 1. Create a maximum cost spanning tree K in graph G subject to edge cost c().

Find unique u-v path in spanning tree K.

Let C be the capacity of $\mu(u, v)$.

 Step 2. Create a new graph G' = (V, H', d), where H' = {h|h ∈ H, c(h) ≥ C}. {edge set H' contains only those edges of original graph with capacity greater or equal to C.}

• **Step 3.** Find the shortest *u*-*v* path in *G'* with respect to edge cost *d*.

þ

Maximum capacity u-v shortest path algorithm

Algorithm

Maximum capacity u-v shortest path algorithm in a connected edge weighted graph G = (V, H, c, d), where c(h) je the capacity and d(h) is the length of edge $h \in H$.

• Step 1. Create a maximum cost spanning tree K in graph G subject to edge cost c().

Find unique u-v path in spanning tree K.

Let C be the capacity of $\mu(u, v)$.

- Step 2. Create a new graph G' = (V, H', d), where H' = {h|h ∈ H, c(h) ≥ C}. {edge set H' contains only those edges of original graph with capacity greater or equal to C.}
- **Step 3.** Find the shortest *u*-*v* path in *G'* with respect to edge cost *d*.

Maximum capacity u-v shortest path algorithm

Algorithm

Maximum capacity u-v shortest path algorithm in a connected edge weighted graph G = (V, H, c, d), where c(h) je the capacity and d(h) is the length of edge $h \in H$.

• Step 1. Create a maximum cost spanning tree K in graph G subject to edge cost c().

Find unique u-v path in spanning tree K.

Let C be the capacity of $\mu(u, v)$.

 Step 2. Create a new graph G' = (V, H', d), where H' = {h|h ∈ H, c(h) ≥ C}. {edge set H' contains only those edges of original graph with capacity greater or equal to C.}

• Step 3. Find the shortest u-v path in G' with respect to edge cost d.

