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Fakulta riadenia a informatiky, Žilinská univerzita
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Opakovanie – Cyklus

Definition

Cycle (directed cycle, quasi-cycle) is non trivial closed walk (directed
walk, quasi-walk) in which every vertex but the first and the last appears
at most once.
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Acyklic graph and tree

Definition

An acyclic graph is a graph that has no cycles.

Definition

A tree is a connected acyclic graph.

Remark

Trivial graph is a tree.

Remark

Every component of an acyclic graph is a tree (is connected and dous not
contain a cycle). Hence an acyclic graph can be considered as several
trees. That is why the term forest is often used as a synonym for

”
acyclic graph“.
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A nontrivial tree contains at least 2 vertices with degree 1

Theorem

Let G = (V ,H) be a tree with at least two vertices.
Then the set V contains at least two vertices with degree 1.

Proof.

Let
(v1, {v1, v2}, v2, . . . , {vk−1, vk}, vk) (1)

be a path in treee G with largest number of edges. We show that
deg(vk) = 1.

Obr.: If deg(vk) > 1,

then there exists at least one edge (dashed) incident with vk ,
creating one of situations a) or b).
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Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Acyclic graphs, trees and spanning trees 4/21



Properties of trees

Theorem

Following assertions are equivalent:

a) G = (V ,H) is a tree.

b) There exists exactly one u–v path in graph G = (V ,H) for every
u, v ∈ V .

c) Graph G = (V ,H) is connected and every edge h ∈ H is a bridge
in G.

d) Graph G = (V ,H) is connected and |H| = |V | − 1.

e) Graph G = (V ,H) is acyclic and |H| = |V | − 1.
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Koreňový tree

Definition

A rooted tree is a tree G = (V ,H) having a distinguished vertex k ∈ V ,
called the root.
The level of vertex u or the depth of a vertex u in rooted tree
G = (V ,H) with root k is the length (number of edges) of (unique) k–u
paht.
The height of the rooted tree G = (V ,H) is the maximum of levels of
all vertices of the rooted tree G.
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Obr.: Several ways how to draw a diagram of a rooted tree with root 1.
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Depth-first search and breadth-first search

Definition

Let the tree T = (VT ,HT ) is a subgraph of graph G = (V ,H). We will
say that the edge h = {u, v} ∈ H is the border edge, if u ∈ VT and
v /∈ VT .
Let h = {u, v} be a border edge, u ∈ VT , v /∈ VT . We will say that u je
the included vertex, v is the free vertex of border edge h.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Acyclic graphs, trees and spanning trees 7/21



Depth-first search and breadth-first search

Definition

Let the tree T = (VT ,HT ) is a subgraph of graph G = (V ,H). We will
say that the edge h = {u, v} ∈ H is the border edge, if u ∈ VT and
v /∈ VT .
Let h = {u, v} be a border edge, u ∈ VT , v /∈ VT . We will say that u je
the included vertex, v is the free vertex of border edge h.
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Depth-First Search

Algorithm

Depth-First Search.

Step 1. Initialization.
Let the tree T be a trivial tree containing single vertex v ∈ V .
Set p(v) := 1, k := 1.

Step 2. If T does not contain all vertices of graph GOTO Step 3.
otherwise STOP.

Step 3. Find a border line h = {u, v} in graph G with tree T
with maximal label p(u) of included vertex u.
If such an edge does not exist STOP.
Otherwise continue in Step 4.

Step 4. Set T := T ∪ {h} ∪ {v}, k := k + 1, p(v) := k.
GOTO Step 2.

♣
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Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Acyclic graphs, trees and spanning trees 8/21



Depth-First Search

Algorithm

Depth-First Search.

Step 1. Initialization.
Let the tree T be a trivial tree containing single vertex v ∈ V .
Set p(v) := 1, k := 1.

Step 2. If T does not contain all vertices of graph GOTO Step 3.
otherwise STOP.

Step 3. Find a border line h = {u, v} in graph G with tree T
with maximal label p(u) of included vertex u.
If such an edge does not exist STOP.
Otherwise continue in Step 4.

Step 4. Set T := T ∪ {h} ∪ {v}, k := k + 1, p(v) := k.
GOTO Step 2.

♣
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Breadth-First Search

Algorithm

Breadth-First Search.

Step 1. Initialization. Let T be a trivial tree containing single
vertex v ∈ V . Set p(v) := 1, k := 1.

Step 2. If T does not contain all vertices of graph GOTO Step 3.
otherwise STOP.

Step 3. Find a border line h = {u, v} in graph G with tree T
with minimal p(u) of included vertex u.
If such an edge does not exist STOP.
Otherwise continue in Step 4.

Step 4. Set T := T ∪ {h} ∪ {v}, k := k + 1, p(v) := k.
GOTO Step 2.

♣
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Depth-first search and breadth-first search
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Minimum cost and Maximum cos spanning tree

Definition

A spanning tree of a connected graph G = (V ,H) is such spanning
subgraph of G that is a tree.

Let G = (V ,H, c) be an edge weighted graph, K a spanning tree of G.
The cost c(K ) of spanning tree K is the sum of edge weights of all
edges of K.

The minimum cost spanning tree of graph G is the spanning tree of G
having the minimum cost.

The maximum cost spanning tree of graph G is the spanning tree of
G having the maximum cost.
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Kruskal’s spanning-tree algorithm I.

Algorithm

Kruskal’s algorithm I. to find minimum (maximum) cost spanning tree
of an edge weighted graph G = (V ,H, c).

Step 1. Let K = (V ,E ) be a spanning subgraph of G with E = ∅.
Arrange all edges of H in their increasing (decreasing) order of
weight into sequence P.

Step 2. Let {u, v} be the first edge in sequence P.
Exclude the edge {u, v} from the sequence P. If the edge {u, v}
does not create a cycle with till now chosen edges of the set E then
insert the edge {u, v} into E , i.e. set E = E ∪ {{u, v}}.

Step 3. If the number of chosen edges is equal to |V | − 1 or if the
sequence P is empty, then STOP. Otherwise GOTO Step 2.

♣
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Kruskal’s spanning-tree algorithm II.

Algorithm

Kruskal’s algorithm II. to find minimum (maximum) cost spanning tree
of an edge weighted graph G = (V ,H, c).

Step 1.Let K = (V ,E ) be a spanning subgraph of G with E = ∅.
Arrange all edges of H in their increasing (decreasing) order of
weight into sequence P.

Step 2. Set label k(i) = i for every vertex i ∈ V .

Step 3. Let {u, v} be the first edge in sequence P.
Exclude the edge {u, v} from the sequence P. If k(u) 6= k(v) then
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♣
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Kruskal’s spanning-tree algorithm II. Example

Sequence P containing all edges of H in their increasing order of weight:

{2,6} {2,4} {3,5} {1,3} {1,5} {4,6} {2,3} {5,7} {4,7} {5,6} {2,5} {3,4}

10 20 20 30 30 30 40 60 70 70 80 80

Edge into spanning tree 1 2 3 4 5 6 7
k(v)

- 1 2 3 4 5 6 7

{2,6} 1 2 3 4 5 2 7

{2,4} 1 2 3 2 5 2 7

{3,5} 1 2 3 2 3 2 7

{1,3} 1 2 1 2 1 2 7

{2,3} 1 1 1 1 1 1 7

{5,7} 1 1 1 1 1 1 1
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Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Acyclic graphs, trees and spanning trees 15/21



Kruskal’s spanning-tree algorithm II. Example

Sequence P containing all edges of H in their increasing order of weight:

{2,6} {2,4} {3,5} {1,3} {1,5} {4,6} {2,3} {5,7} {4,7} {5,6} {2,5} {3,4}

10 20 20 30 30 30 40 60 70 70 80 80

Edge {u, v} = {5, 7}
k(5) = 1, k(7) = 7

k(5) 6= k(7) ⇒
insert {5, 7} into
spanning tree

Edge into spanning tree 1 2 3 4 5 6 7
k(v)

- 1 2 3 4 5 6 7

{2,6} 1 2 3 4 5 2 7

{2,4} 1 2 3 2 5 2 7

{3,5} 1 2 3 2 3 2 7

{1,3} 1 2 1 2 1 2 7

{2,3} 1 1 1 1 1 1 7

{5,7} 1 1 1 1 1 1 1
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Maximum capacity path problem

Definition

Let G = (V ,H, c) be a ege weighted graph where edge cost c(h) > 0 of
an edge h ∈ H means the capacity of the edge h.

Capacity c(µ(u, v)) of u–v path (walk, trail, etc.) µ(u, v) is defined
as

c(µ(u, v)) = min{c(h) | h ∈ µ(u, v)}.

Definition

We will say that u–v path µ(u, v) in graph G = (V ,H, c) is maximum
capacity u–v path if the path µ(u, v) has largest capacitu of all
u–v paths in G.

Remark

The maximum capacity path problem is also known as the bottleneck
shortest path problem or the widest path problem.
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Maximum capacity path problem

Theorem

Let K be a maximum capacity spanning tree in a connected edge
weighted graph G = (V ,H, c), let {u, v} ∈ H be such an edge of graph
G which is not an element of edge set of K.
Let µ(u, v) be a (unique) u-v path in spanning tree K.
Then the capacity of the path µ(u, v) is greater or equal to the capacity
of edge {u, v}, i. e.

c(µ(u, v)) ≥ c(u, v).
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Maximum capacity path problem

Proof.

Let us have a maximum cost spanning tree K and let there exists an edge
{u, v} such that capacity of u-v path along edges of spanning tree is less
than c(u, v)).

u v

i
j

c(u,v) > c(i,j)

Spanning tree K blue, edge h = {u, v} (red)
u-v path along edges of spanning tree (violet) with less capacity than c(u, v)

Then there exists and edge {i , j} of this path such that c(u, v) > c(i , j)
By replacing of edge {i , j} by edge {u, v} we get a spanning tree with greater cost –

contradiction with assupmtion that K was a maximum cost spanning tree.
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Proof.

Let us have a maximum cost spanning tree K and let there exists an edge
{u, v} such that capacity of u-v path along edges of spanning tree is less
than c(u, v)).

u v

i
j

c(u,v) > c(i,j)

o [c(u,v)]−c(i,j)] vacsiu
Nová kostra má cenu 

Spanning tree K blue, edge h = {u, v} (red)
u-v path along edges of spanning tree (violet) with less capacity than c(u, v)
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Maximum capacity path problem

Theorem

Let K be a maximum cost spanning tree in a connected edge weighted
graph G = (V ,H, c). Then for all u, v ∈ V the (unique) u–v path in K
is a maximum capacity u–v path in G.

Proof.
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Maximum capacity path problem

Theorem

Let K be a maximum cost spanning tree in a connected edge weighted
graph G = (V ,H, c). Then for all u, v ∈ V the (unique) u–v path in K
is a maximum capacity u–v path in G.

Proof.

u = v1 vv2 v3 v4

v5

v6

v7

v8
v9

Maximum capacity path:
µ(u, v) = (u, {u ≡ v1, v2}, v2, {v2, v3}, v3, {v3, v4}, v4, {v4, v}, v),
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Maximum capacity path problem

Theorem

Let K be a maximum cost spanning tree in a connected edge weighted
graph G = (V ,H, c). Then for all u, v ∈ V the (unique) u–v path in K
is a maximum capacity u–v path in G.

Proof.

u = v1 vv2 v3 v4

v5

v6

v7

v8
v9

µ(u, v2) = (u, {u, v5}, v5, {v5, v6}, v6, {v6, v2}, v2),
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Maximum capacity path problem

Theorem

Let K be a maximum cost spanning tree in a connected edge weighted
graph G = (V ,H, c). Then for all u, v ∈ V the (unique) u–v path in K
is a maximum capacity u–v path in G.

Proof.

u = v1 vv2 v3 v4

v5

v6

v7

v8
v9

µ(v2, v3) = (v2, {v2, v6}, v6, {v6, v3}, v3),
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Maximum capacity path problem

Theorem

Let K be a maximum cost spanning tree in a connected edge weighted
graph G = (V ,H, c). Then for all u, v ∈ V the (unique) u–v path in K
is a maximum capacity u–v path in G.

Proof.

u = v1 vv2 v3 v4

v5

v6

v7

v8
v9

µ(v3, v4) = (v3, {v3, v7}, v7, {v7, v8}, v8, {v8, v4}, v4),
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Maximum capacity path problem

Theorem

Let K be a maximum cost spanning tree in a connected edge weighted
graph G = (V ,H, c). Then for all u, v ∈ V the (unique) u–v path in K
is a maximum capacity u–v path in G.

Proof.

u = v1 vv2 v3 v4

v5

v6

v7

v8
v9

µ(v4, v) = (v4, {v4, v8}, v8, {v8, v7}, v7, {v7, v9}, v9, {v9, v}, v).
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Maximum capacity path problem

Theorem

Let K be a maximum cost spanning tree in a connected edge weighted
graph G = (V ,H, c). Then for all u, v ∈ V the (unique) u–v path in K
is a maximum capacity u–v path in G.

Proof.

u = v1 vv2 v3 v4

v5

v6

v7

v8
v9

u-v sled po hranách kostry s priepustnost’ou ≥ než priepustnnost’ cesty µ(u, v)
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Maximum capacity path problem

Theorem

Let K be a maximum cost spanning tree in a connected edge weighted
graph G = (V ,H, c). Then for all u, v ∈ V the (unique) u–v path in K
is a maximum capacity u–v path in G.

Proof.

u = v1 vv2 v3 v4

v5

v6

v7

v8
v9

Maximum capacity path:
µ(u, v) = (u, {u ≡ v1, v2}, v2, {v2, v3}, v3, {v3, v4}, v4, {v4, v}, v),

Maximum capacity path along edges of spanning tree
u, {u, v5}, v5, {v5, v6}, v6, {v6, v3}, v3, {v3, v7}, v7, {v7, v9}, v9, {v9, v}, v .
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Maximum capacity u–v path algorithm

Algorithm

Maximum capacity u–v path algorithm in a connected edge
weighted graph G = (V ,H, c).

Step 1. Create a maximum cost spanning tree K in graph G.

Step 2. Find unique u–v path in spanning tree K.

This u–v path along edges of K is a maximum capacity u–v path
in graph G.

♣

Remark

Last algorithm wil find a maximum capacity u–v path, but this path is
not in many cases optimal from the point of view of traveled distance.
In the case that we are looking for maximum capacity shortest u–v path
we need be given in corresponding graph (together with capacity)
additional edge cost representing the length of edges.
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Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Acyclic graphs, trees and spanning trees 20/21



Maximum capacity u–v path algorithm

Algorithm

Maximum capacity u–v path algorithm in a connected edge
weighted graph G = (V ,H, c).

Step 1. Create a maximum cost spanning tree K in graph G.

Step 2. Find unique u–v path in spanning tree K.

This u–v path along edges of K is a maximum capacity u–v path
in graph G.

♣

Remark

Last algorithm wil find a maximum capacity u–v path, but this path is
not in many cases optimal from the point of view of traveled distance.
In the case that we are looking for maximum capacity shortest u–v path
we need be given in corresponding graph (together with capacity)
additional edge cost representing the length of edges.
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Maximum capacity u–v shortest path algorithm

Algorithm

Maximum capacity u–v shortest path algorithm in a connected
edge weighted graph G = (V ,H, c , d), where c(h) je the capacity
and d(h) is the length of edge h ∈ H.

Step 1. Create a maximum cost spanning tree K in graph G
subject to edge cost c( ).

Find unique u–v path in spanning tree K.

Let C be the capacity of µ(u, v).

Step 2. Create a new graph G ′ = (V ,H ′, d), where
H ′ = {h|h ∈ H, c(h) ≥ C}.
{edge set H ′ contains only those edges of original graph with
capacity greater or equal to C.}

Step 3. Find the shortest u–v path in G ′ with respect to edge
cost d.

♣
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Algorithm

Maximum capacity u–v shortest path algorithm in a connected
edge weighted graph G = (V ,H, c , d), where c(h) je the capacity
and d(h) is the length of edge h ∈ H.

Step 1. Create a maximum cost spanning tree K in graph G
subject to edge cost c( ).

Find unique u–v path in spanning tree K.

Let C be the capacity of µ(u, v).

Step 2. Create a new graph G ′ = (V ,H ′, d), where
H ′ = {h|h ∈ H, c(h) ≥ C}.
{edge set H ′ contains only those edges of original graph with
capacity greater or equal to C.}

Step 3. Find the shortest u–v path in G ′ with respect to edge
cost d.

♣
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