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Acyclic digraph, directed tree

Definition

An acyclic digraph is a digraph in which there is no directed cycle.

Definition

A directed tree is a weekly connected digraph in which is no quasi-cycle.

Remark

If
−→
G = (V ,H) as an acyclic digraph then it can not contain both arcs

(u, v) and (v , u) simultaneously, since, in this case, it would contain also
following cycle (u, (u, v), v , (v , u), u).

Remark

(u, (u, v), v , (u, v), u) is not a quasi-cycle, since it contains the same arc
(u, v) twice.
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Acyclic digraph

We can create for every acyclic digraph
−→
G = (V ,H) a (non directed)

graph G ′ = (V ,H ′) with the same vertex set V and with edge set H ′

defined as

H ′ = {{u, v} | (u, v) ∈ H} . (1)

Edge set H ′ is the arc set H in which we
”
forget“ direction.

Since an acyclic digraph can contain at most one arc from (u, v), (v , u)
for every pair of vertices u ∈ V , v ∈ V , it bholds

|H ′| = |H|.
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Acyclic digraph
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Obr.: a) Weakly connected acyclic digraph,
which is not a directed tree.

b) Directed tree
−→
G .

c) Non directed tree corresponding to
−→
G .
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Properties of directed trees

Theorem

Following assertions are equivalent:

a) Digraph
−→
G = (V ,H) je a directed tree.

b) There exists exactly one u–v quasi-path in digraph
−→
G = (V ,H) for

every u, v ∈ V .

c) Digraph
−→
G = (V ,H) is weakly connected and every arc of arc set H

is a bridge in
−→
G = (V ,H).

(A bridge in a digraph is such an arc, after removing it the number
of components rises.)

d) Digraph
−→
G = (V ,H) is weakly connected and |H| = |V | − 1.

e) Digraph
−→
G = (V ,H) does not contain a quasi-cycle and it holds

|H| = |V | − 1.
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Properties of acyclic digraphs

Theorem
Let

−→
G = (V ,H) be an acyclic digraph.

Then V contains at least one vertex z such that ideg(z) = 0
and at least one vertex u such that odeg(u) = 0.

Proof.

Let
µ(v1, vk) = (v1, (v1, v2), v2, . . . , (vk−1, vk), vk)

be a directed path in digraph
−→
G with maximum number of arcs.

We show that odeg(vk) = 0.

v1 v2 vk

If odeg(vk) > 0,
then there exists at least on arc (dashed) outgoing from vk ,

which extends path µ(v1, vk) (contradiction with path havin maximu number of arcs)

or closes a cycle (contradiction with acyclicity of
−→
G )
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Topological ordering of acyclic digraph

Theorem

A digraph
−→
G = (V ,H) is acyclic if and only if its vertex set V can be

ordered into sequence
v1, v2, . . . , vn (2)

so that it holds:
If (vi , vk) ∈ H then i < k . (3)

Definition

Numbering of vertices v1, v2, . . . , vn of an acyclic digraph
−→
G = (V ,H) for which it holds:

if (vi , vk) ∈ H, then i < k ,

is called topological ordering of vertices of acyclic digraph
−→
G .
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Topological ordering of acyclic digraph

Algorithm

Algorithm I. for topological ordering of acyclic digraph
−→
G = (V ,H).

Step 1. Set i := 1.

Step 2. {Digraph
−→
G = (V ,H) contains at least one vertex such

that v ∈ V , že ideg(v) = 0.}
Take such vertex v ∈ V for which ideg(v) = 0 and set vi := v.

Step 3. If V − {v} = ∅ STOP,

otherwise
−→
G :=

−→
G − {v}, i := i + 1 and Goto Step 2.

♣
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Topological ordering of acyclic digraph

Algorithm

Algorithm I. for topological ordering of acyclic digraph
−→
G = (V ,H).

Step 1. Set i := 1.

Step 2. {Digraph
−→
G = (V ,H) contains at least one vertex such

that v ∈ V , že ideg(v) = 0.}
Take such vertex v ∈ V for which ideg(v) = 0 and set vi := v.

Step 3. If V − {v} = ∅ STOP,

otherwise
−→
G :=

−→
G − {v}, i := i + 1 and Goto Step 2.

♣
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Topological ordering of acyclic digraph

Algorithm
Algorithm II. for topological ordering of acyclic digraph
−→
G = (V ,H).

Step 1. Assign a label d(v) := ideg(v) for every vertex v ∈ V .

Determine the subset V0 ⊆ V of vertex set V containing all vertices
with zero label d( ), i. e.

V0 = {v | v ∈ V , d(v) = 0}.

Set k := |V0| and order the elements of V0 into arbitrary sequence
P = v1, v2, . . . , vk .

Set i := 1. Set r := i .

Step 2. For all vertices w ∈ V+(r) do:
d(w) := d(w)− 1. If d(w) = 0 then set k := k + 1, vk := w.

Step 3. If k = n = |V | then STOP. Otherwise set i := i + 1,
r := vi and GOTO Step 2.

♣
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Topological ordering of acyclic digraph

4

3

5

1

8
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6
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i v(i) 1 2 3 4 5 6 7 8
d(v)

- - 2 2 2 2 3 0 0 2

1 6 2 2 1 1 0 2

2 7 2 2 0 0 2 2

3 3 1 2 1 1

4 4 1 2 0 1

5 5 0 1 1

6 1 0 0

7 2

8 8

6 7 5 1 2 843
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Transitieve digraph

Definition

An acyclic digraph
−→
G = (V ,H) is transitive, if for every two arcs

(u, v) ∈ H, (v ,w) ∈ H there exists arc (u,w) ∈ H.

u

v

w
In a transitive digraph there is a direct arc (v ,w) for every pair of arcs (u, v), (v ,w)

Theorem

An acyclic digraph
−→
G is transitive if and only if there exists an arc

(u, v) ∈ H for every directed u–v path in (u, v) ∈ H.
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Transitive closure, transitive reduction

Definition

A tranzitive closure
−→
G T of a digraph

−→
G , is minimal transitive digraph

containing as a subgraph digraph
−→
G .

A transitive reduction
−→
G R of a digraph

−→
G is minimal spanning

subgraph of digraph
−→
G with the same reachebility of vertices as in

digraph
−→
G .

a) Digraph
−→
G . b) Transitive closure

−→
G T of digraph

−→
G .

c) Transitive reduction
−→
G R of digraph

−→
G .
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Shortest path problem in the general case of arc weights

If there exists a negative cycle in a digraph
−→
G = (V , h, c) then all

shortest path algorithms fail.

1 2

3

−10

−10
−10

0|0 ∞|0

∞|0

However, shortest path problem is polynomialy solvable in acyclic graps
even in the case of general arc weights.
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Shortest path in an acyclic digraph

Algorithm
Shortest path algorithm for an acyclic digraph. This algorithm will
find all shortest u–v directed paths from a fixed vertex u ∈ V into all

reachable vertices v ∈ V in an edge weighted digraph
−→
G = (V ,H, c)

with general edge weight c(h).
Step 1. Arrange all vertices of digraphu

−→
G in topological order into

sequence P = v1, v2, . . . , vn.

Find index of vertex u in sequence P. Let i be index such that
u = vi .

Step 2. Assign two labels t(v), x(v) for every vertex v ∈ V .

Set t(u) := 0, t(j) := ∞ for all j 6= u, j ∈ V .

Set x(j) := 0 for all j ∈ V .

Step 3. For all veriteces w ∈ V+(vi ) do:
If t(w) > t(vi ) + c(vi ,w),

then t(w) = t(vi ) + c(vi ,w), a x(w) := vi .

Step 4. i := i + 1. If i = n STOP, otherwise GOTO Step 3.
♣
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Longest path in a digraph

Definition

Let
−→
G = (V ,H, c) be an arc weighted digraph, let u ∈ V , v ∈ V .

Longest directed u–v path in digraph
−→
G = (V ,H, c) is that

directed u–v path which has largest length of all directed u–v
paths.

Remark

Longest path in an edge weighted graph G = (V ,H, c) can be
defined by the same way.
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Longest path in a digraph

Remark
Shortest path problem in an arc weighted digraph
−→
G = (V ,H, c) with nonnegative arc weights (in which
c(h) ≥ 0 ∀h ∈ H) is polynomialy solvable.

Shortest path problem in an arc weighted digraph
−→
G = (V ,H, c) in which arc weights take general (and also
negative) values is in general hard – there is no polynomial
algorithm for it.

Longest path problem in a digraph
−→
G = (V ,H, c) can be

transformed to shortest path in digraph
−→
G ′ = (V ,H, c),

where c(h) = −c(h).
This is in general hard problem.
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Projekt planning methods

A project is composed from acitivities

An activity is an elementary amount of work which is from our point
of view indivisible.

Every activity is determined by its fixed processing time which can
be different from activity to activity. Activities can differ by
processing time.

Several activities can be performed simlutanously, but execution of
some activities can start only after some another acivities are
finished.

Definition
We will say that activity A precedes activity B and write A ≺ B,
if activity B can start only after activity A ends.
If A ≺ B, we will say tha activity A is predecessor of activity B, or
activity B is successor of activity A.
A ≺ B is a binary relation on the set of all given activities and it will be
called a precedence relation.
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Precedence relation

Remark

Precedence relation ≺ je transitive, e. g. it holds:
If A ≺ B, B ≺ C, then A ≺ C.

If activity B has to wait for the end of activity A and activity C has to
wait for the end of activity B, then activity C can not start sooner than
activity A ends.

Precedence relation ≺ is antireflexive, i. e.:
For no A ∈ E it holds A ≺ A,

otherwise start of activity A should wait for its own end what is
thenological nonsence.
Colorary: There does no exist a sequence of activities A1,A2, . . . ,An such
that

A1 ≺ A2 ≺ · · · ≺ An ≺ A1,

otherwise transitivity implies: A1 ≺ A1.
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Immediate precedence. Project planning problem.

Definition

We will say that activity A immediately precedes activity B and write
A ≺≺ B, if A ≺ B and there does not exist activity C
such that A ≺ C and simlutaneously C ≺ B.

If A ≺≺ B we will say also that
activity A is immediate predecessor of activity B,
or
activity B ise immediate successor of activity A.

Definition

Project planning problem U is given by the set of activites A,
precedence relation ≺ on the sest A and by real function p : A → R

assigning to every activity A ∈ A its processing time p(A).
(p – processing time).
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Digraph of precedence

Definition
A digraph of precedence ≺ or a precedence digraph for corresponding

project planning problem U is a vertex weighted digraph

−→
G≺ = (V ,H≺, p),

whose vertex set is the set of all activities, i.e. V = A, vertex weight p(v) > 0

represents processing time of vertex – activity v ∈ V and arc set of
−→
G≺ is

H≺ = {(A,B)| A,B ∈ V , A ≺ B}.

Definition
A digraph of immediate precedence ≺≺ for project planning problem U is

a vertex weighted digraph

−→
G≺≺ = (V ,H≺≺, p),

with vertex set V = A, wertex weight p(v) > 0 representing processing time

of v ∈ V and arc set

H≺≺ = {(A,B)| A,B ∈ V , A ≺≺ B}.
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Technological table of project

Technological table of project

Activity No Processing time Succesor activities

Foundation excavations 1 4 3
Engineer networks 2 3 8 9
Concrete forming of foundations 3 2 4
Concreting of foundations 4 3 5 6
Outer walls 5 6 7 8 9 10 12
Inner partition walls 6 8 9 11
Roof 7 6 13
Electric instalations 8 2 11 13
Wate instalations 9 3 11 13
External rendering 10 2 12
Inner rendering 11 3 13
Windows, doors 12 1 13
Final building approval 13 1 -
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Precedence digraph corresponding to technological table
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Schedule

To create a schedule for given project planning problem U means to
assing a time interval 〈bA, cA), bA < cA for every activity A in which
activity A will be processed.

bA – beginning time of activity A

cA – completion time of actiity A

A feasible schedule of project U is a schedule for project U , where it
holds for arbitrary two activities A, B :

1. cA − bA = p(A)

2. if A ≺ B , then bA < cA ≤ bB < cB

Remark

Remember that it suffices (based on property 1. of fesible schedule) to
determine for every activity A only its beginning bA. Completion time can
be then calculated as cA = bA + p(A).
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Minimum completion time T

There is a lot of feasible schedules for given project. However, we
are interested in a feasible schedule wich is optimal from certain
point of view.

We take very often Cmax – completion time of last activity as
objective function.

Cmax = max{cA | A ∈ A},

whereas we assume that project starts in time 0.

Value Cmax is called makespan.

The goal of our project planning problem is to determine a feasible
schedule for the given project U with minimal makespan Cmax.

Denote by T minimum of all completion times of all feasible
schedules.
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Earliest possible start, Latest necessary completion time, Time reserve

Set start of project to the time 0.

Earliest possible start z(A) of activity A is the least time moment
measured from the beginning of project in which it is possible to
start execute activity A whereby precedence relation ≺ is kept.

If earliest possible start is determined for all A ∈ A then the
minimum completion time T of project can be determined as:

T = max{z(A) + p(A) | A ∈ E}

Suppose that the minimum completion time T of project is
determined.

Latest necessary completion time k(A) of activity A is defined as
the largest time moment measured from the beginning of project to
which end of execution of activity A can be delayed without
encrease of the minimum completion time T .

Time reserve R(A) of activity A is:

R(A) = k(A)− z(A)− p(A).
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Critical activities, critical path

A critical activity A is an activity with R(A) = 0.

Critical path in digraph
−→
G≺≺ is such directed path which has

maximal sum of vertex weights.

Remark

It can be shown that

A critical path in
−→
G≺≺ contains only critical activities.

The sum of vertex weights of arbitrary critical path in
−→
G≺≺ is equal

to the minimum completion time T of project.
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Determining erliest possible starts of activities

1 3 4

6

5

10

7

8

9

12

13

11

2

1

Only blue arcs of immediate precedence are necessary for correct project

analysis. Red arcs are not arcs of immediate precedence. They have no

influence on result, but they can slightly extend computing time.Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Acyclic digraphs 27/39
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Determining erliest possible starts of activities

1 3 4

6

5

10

7

8

9

12

13

11

2

1

2

3 4

Only blue arcs of immediate precedence are necessary for correct project

analysis. Red arcs are not arcs of immediate precedence. They have no

influence on result, but they can slightly extend computing time.Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Acyclic digraphs 27/39
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Critical activities, critical path

Algorithm

Algorithm II. to determine earliest beginnings z(v) of activities in

digraph
−→
G≺≺ = (V ,H, p).

Step 1. Create topological ordering v1, v2, . . . , vn of vertex set of

digraph
−→
G≺≺.

Step 2. Assign two labels z(v), x(v) to every vertex v ∈ V .
Set x(v) := 0, z(v) := 0 for every v ∈ V .

Step 3. For k = 1, 2, . . . , n − 1 do:

For all vertices w ∈ V+(vk) do:
If z(w) < z(vk) + p(vk),
then z(w) := z(vk) + p(vk) and x(w) := vk .

Step 4. Compute the minimum completion time of project:

T := max{z(w) + p(w) | w ∈ V , odeg(w) = 0}

♣
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Critical activities, critical path

Algorithm

Algorithm II. to determine latest necessary completion times k(v)

of activities in digraph
−→
G≺≺ = (V ,H, p).

Step 1. Create topological ordering v1, v2, . . . , vn of vertex set of

digraph
−→
G≺≺.

Step 2. Assign two labels k(v), y(v) to every vertex v ∈ V . Let T
be the minimum completion time of the project.
Set k(v) := T, y(v) := 0 for every v ∈ V .

Step 3. For i = n − 1, n − 2, . . . , 1 do:

For all vertices w ∈ V+(vi ) do:
If k(vi ) > k(w)− p(w),
then k(vi ) := k(w)− p(w) a y(vi ) := w .

♣
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Computation of earliest possible starts

Forward stars Table for computation of earliest possible starts of activities

v p(v) V+(v) v p(v) z(v) 1 2 3 4 5 6 7 8 9 10 11 12 13
z(i)

- - 0 0 0 0 0 0 0 0 0 0 0 0 0
1 4 3 1 4 0 4
2 3 8 9 2 3 0 3 3
3 2 4 3 2 4 6
4 3 5 6 4 3 6 9 9
5 6 7 8 9 10 12 5 6 9 15 15 15 15 15
6 8 8 9 11 6 8 9 17 17 17
7 6 13 7 6 15 21
8 2 11 13 8 2 17 19
9 3 11 13 9 3 17 20
10 2 12 10 2 15 17
11 3 13 11 3 20 23
12 1 13 12 1 17
13 1 - 13 1 23

T = max{z(v) + p(v) | v ∈ V } = 24.
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Computation of earliest possible starts

Forward stars Table for computation of earliest possible starts of activities

v p(v) V+(v) v p(v) z(v) 1 2 3 4 5 6 7 8 9 10 11 12 13
z(i)

- - 0 0 0 0 0 0 0 0 0 0 0 0 0
1 4 3 1 4 0 4
2 3 8 9 2 3 0 3 3
3 2 4 3 2 4 6
4 3 5 6 4 3 6 9 9
5 6 7 8 9 10 12 5 6 9 15 15 15 15 15
6 8 8 9 11 6 8 9 17 17 17
7 6 13 7 6 15 21
8 2 11 13 8 2 17 19
9 3 11 13 9 3 17 20
10 2 12 10 2 15 17
11 3 13 11 3 20 23
12 1 13 12 1 17
13 1 - 13 1 23

T = max{z(v) + p(v) | v ∈ V } = 24.
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3 2 4 3 2 4 6
4 3 5 6 4 3 6 9 9
5 6 7 8 9 10 12 5 6 9 15 15 15 15 15
6 8 8 9 11 6 8 9 17 17 17
7 6 13 7 6 15 21
8 2 11 13 8 2 17 19
9 3 11 13 9 3 17 20
10 2 12 10 2 15 17
11 3 13 11 3 20 23
12 1 13 12 1 17
13 1 - 13 1 23

T = max{z(v) + p(v) | v ∈ V } = 24.
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Computation of latest necessary completion times

Forward stars Table for computation of latest necessary completion times of activities

v V+(v) v p(v) k(v)− p(v) k(v) 1 2 3 4 5 6 7 8 9 10 11 12 13
k(v) = min{k(i)− p(i) | i ∈ V+(v)}

- - - 24 24 24 24 24 24 24 24 24 24 24 24 24
13 - 13 1 23 24 24
12 13 12 1 22 23 23
11 13 11 3 20 23 23
10 12 10 2 20 22 22
9 11 13 9 3 17 20 20
8 11 13 8 2 18 20 20
7 13 7 6 17 23 23
6 8 9 11 6 8 9 17 17
5 7 8 9 10 12 5 6 11 17 17
4 5 6 4 3 6 9 9
3 4 3 2 4 6 6
2 8 9 2 3 14 17 17
1 3 1 4 0 4 4
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Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Acyclic digraphs 33/39



Computation of latest necessary completion times

Forward stars Table for computation of latest necessary completion times of activities

v V+(v) v p(v) k(v)− p(v) k(v) 1 2 3 4 5 6 7 8 9 10 11 12 13
k(v) = min{k(i)− p(i) | i ∈ V+(v)}

- - - 24 24 24 24 24 24 24 24 24 24 24 24 24
13 - 13 1 23 24 24
12 13 12 1 22 23 23
11 13 11 3 20 23 23
10 12 10 2 20 22 22
9 11 13 9 3 17 20 20
8 11 13 8 2 18 20 20
7 13 7 6 17 23 23
6 8 9 11 6 8 9 17 17
5 7 8 9 10 12 5 6 11 17 17
4 5 6 4 3 6 9 9
3 4 3 2 4 6 6
2 8 9 2 3 14 17 17
1 3 1 4 0 4 4
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Critical activities, critical path

v p(v) z(v) k(v) R(v) = k(v)− z(v)− p(v)
1 4 0 4 0
2 3 0 17 14
3 2 4 6 0
4 3 6 9 0
5 6 9 17 2
6 8 9 17 0
7 6 15 23 2
8 2 17 20 1
9 3 17 20 0
10 2 15 22 3
11 3 20 23 0
12 1 17 23 5
13 1 23 24 0

5

10

7

8

12

2

1 3 4

6

9
11

13
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Classical interpretation of CPM method

Let U be a project planning problem given by an activity set A,
precedence relation ≺ on the set A and by a real function c : A → R

assigning to every activity A ∈ A its processing time p(A).

AOA (activity on arc) network is a weakly connected acyclic edge

weighted digraph
−→
G = (V ,H, p) containg exactly one vertex s – start of

the project and exactly one vertex f – finish of the project with following
properties:
Every vertex v of V is reachable from the start s and
the finish f is reachable from every vertex v of V .

Arcs of AOA network represents activities – for every activity A ∈ A is
assigned exatly one arc having arc weight equal to processing time p(A)
of A.

Vertices represent events of beginnings and completions of activities.

If A ≺≺ B – i.e. activity A immediately precedes activity B then the arc

B has its head identical with the tail of the arc A.
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Classical interpretation of CPM method

Suppose that V = {1, 2, . . . n} and that s = 1 – start ot hte project,
f = n – finish of the project.
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160160
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30
i

Ti T ′

i

Ti – Earliest possible beginning time of activities
outgoing from vertex i

T ′

i – Latest necessary completion time of activities
incommning into vertex i

Diagram of an AOA network as can be found in many textbooks.

However, author(s) tacticaly keep silent about how to construct it
for a technological table without so called dummy activites

with zero processing time
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Classical interpretation of CPM method

Denote by dmax(x , y) the length of the longest x–y directed path in AOA

network
−→
G . Remember that vertex 1 is the start and vertex n is the finish

of corresponding project.

The earliest possible time Ti of activities outgoing from every vertex
i ∈ V is calculated as

Ti = dmax(1, i)

The latest possible completion time T ′

i of activities incomming into
vertex i ∈ V is calculated as

T ′

i = Tn − dmax(i , n)

The minimum completion time T of the project is

T = Tn.

Every directed 1 - n path having the length equal to T is called a critical
path. (There can exist mor ctitical paths).

Activities belonging to a critical path are called critical activities.

Time reserve Ri ina vertex i is Ri = T ′

i − Ti .
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Construction of AOA network
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Construction of AOA network
−→
G S (below) from precedence digrap

−→
G≺≺ (above).
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Construction of AOA network

1 Create digraph of immediate precedence
−→
G≺≺.

2 Declare all arcs of
−→
G≺≺ as dummy arcs with processing times equal

to 0.

3 Add two vertices z and k .

4 Add arcs of the type (z , v) for all vertices v such that ideg(v) = 0.
Consider these arcs as dummy arcs with processing times equal to 0.

5 Add arcs of the type (v , k) for all vertices v such that
odeg(v) = 0.These arcs consider as dummy arcs with processing
times equal to 0.

6 Split every vertex representing an activity into input and output
part. Add an arc with head equal to input part and tail equal to
output part of every splitted vertex and set weight of this arc equal
to processing time of corresponding activity.
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