
Flows in networks

Stanislav Palúch

Fakulta riadenia a informatiky, Žilinská univerzita

28. apŕıla 2016

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 1/22

network

Definition
A capacitated network is a weakly connected arc weighted digraph
−→
G = (V ,H, c) containing two distinguished vertices

s – source with ideg(s) = 0 and

t – sink or target with odeg(t) = 0

and in which arc weight c(h) > 0 of every arc h ∈ H is integer and
represents capacity of arc h.

Notation: Let v ∈ V be a vertex of a digraph
−→
G = (V ,H, c).

H+(v) is the set of all arcs outgouing from vertex v .

H−(v) is the set of all arcs incomming into vertexv .

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 2/22

Sets H+(v) and H−(v)

It holds for the sets H+(v), H−(v):

H−(v) = {(u, j) | j = v , (u, j) ∈ H},

H+(v) = {(i ,w) | i = v , (i ,w) ∈ H}.

u1

u2

u3

w1

w2

w3

w4

H−(v) H+(v)

v

Set H−(v) = {(u1, v), (u2, v), (u3, v)}
and set H+(v) = {(v ,w1), (v ,w2), (v ,w3), (v ,w4)}

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 3/22

Flow in the network

Definition

A flow y in the network
−→
G = (V ,H, c) is an integer function

y : H → R defined on the arc set H for which it holds:

1. y(h) ≥ 0 for all h ∈ H (1)

2. y(h) ≤ c(h) for all h ∈ H (2)

3.
∑

h∈H+(v)

y(h) =
∑

h∈H−(v)

y(h) for all vertices v ∈ V , such that v 6= s, v 6= t

(3)

4.
∑

h∈H+(s)

y(h) =
∑

h∈H−(t)

y(h) (4)

The value of flow y is the number F (y) =
∑

h∈H+(s) y(h)

(which is equal to
∑

h∈H−(t) y(h)).

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 4/22

Flow in the network

Definition

A flow y in the network
−→
G = (V ,H, c) is an integer function

y : H → R defined on the arc set H for which it holds:

1. y(h) ≥ 0 for all h ∈ H (1)

2. y(h) ≤ c(h) for all h ∈ H (2)

3.
∑

h∈H+(v)

y(h) =
∑

h∈H−(v)

y(h) for all vertices v ∈ V , such that v 6= s, v 6= t

(3)

4.
∑

h∈H+(s)

y(h) =
∑

h∈H−(t)

y(h) (4)

The value of flow y is the number F (y) =
∑

h∈H+(s) y(h)

(which is equal to
∑

h∈H−(t) y(h)).

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 4/22

Flow in the network

Definition

A flow y in the network
−→
G = (V ,H, c) is an integer function

y : H → R defined on the arc set H for which it holds:

1. y(h) ≥ 0 for all h ∈ H (1)

2. y(h) ≤ c(h) for all h ∈ H (2)

3.
∑

h∈H+(v)

y(h) =
∑

h∈H−(v)

y(h) for all vertices v ∈ V , such that v 6= s, v 6= t

(3)

4.
∑

h∈H+(s)

y(h) =
∑

h∈H−(t)

y(h) (4)

The value of flow y is the number F (y) =
∑

h∈H+(s) y(h)

(which is equal to
∑

h∈H−(t) y(h)).

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 4/22

Flow in the network

Definition

A flow y in the network
−→
G = (V ,H, c) is an integer function

y : H → R defined on the arc set H for which it holds:

1. y(h) ≥ 0 for all h ∈ H (1)

2. y(h) ≤ c(h) for all h ∈ H (2)

3.
∑

h∈H+(v)

y(h) =
∑

h∈H−(v)

y(h) for all vertices v ∈ V , such that v 6= s, v 6= t

(3)

4.
∑

h∈H+(s)

y(h) =
∑

h∈H−(t)

y(h) (4)

The value of flow y is the number F (y) =
∑

h∈H+(s) y(h)

(which is equal to
∑

h∈H−(t) y(h)).

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 4/22

Flow in the network

Definition

A flow y in the network
−→
G = (V ,H, c) is an integer function

y : H → R defined on the arc set H for which it holds:

1. y(h) ≥ 0 for all h ∈ H (1)

2. y(h) ≤ c(h) for all h ∈ H (2)

3.
∑

h∈H+(v)

y(h) =
∑

h∈H−(v)

y(h) for all vertices v ∈ V , such that v 6= s, v 6= t

(3)

4.
∑

h∈H+(s)

y(h) =
∑

h∈H−(t)

y(h) (4)

The value of flow y is the number F (y) =
∑

h∈H+(s) y(h)

(which is equal to
∑

h∈H−(t) y(h)).

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 4/22

Maximum flow in a capacitated network

Definition

A maximum flow in a capacitated network
−→
G is a flow y∗ having the

maximum value F (y∗), i,e. if F (y) ≤ F (y∗) for every flow y in
−→
G .

An arc h ∈ H is saturated, if y(h) = c(h).

Remark

A flow in a network is a real function y : H → R defined on the set
of all arcs.

The number y(h) is the value of function y for certain element h of
its domain.

(Compare y and y(h) with two notions: function log and value
log(2)).

The value y(h) will be called a flow along arc h.

A flow y in the network
−→
G is in fact another edge weight, therefore

a network
−→
G with flow y can be considered as a digraph

−→
G = (V ,H, c , y) with two edge weights.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 5/22

Maximum flow in a capacitated network

Definition

A maximum flow in a capacitated network
−→
G is a flow y∗ having the

maximum value F (y∗), i,e. if F (y) ≤ F (y∗) for every flow y in
−→
G .

An arc h ∈ H is saturated, if y(h) = c(h).

Remark

A flow in a network is a real function y : H → R defined on the set
of all arcs.

The number y(h) is the value of function y for certain element h of
its domain.

(Compare y and y(h) with two notions: function log and value
log(2)).

The value y(h) will be called a flow along arc h.

A flow y in the network
−→
G is in fact another edge weight, therefore

a network
−→
G with flow y can be considered as a digraph

−→
G = (V ,H, c , y) with two edge weights.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 5/22

Maximum flow in a capacitated network

Definition

A maximum flow in a capacitated network
−→
G is a flow y∗ having the

maximum value F (y∗), i,e. if F (y) ≤ F (y∗) for every flow y in
−→
G .

An arc h ∈ H is saturated, if y(h) = c(h).

Remark

A flow in a network is a real function y : H → R defined on the set
of all arcs.

The number y(h) is the value of function y for certain element h of
its domain.

(Compare y and y(h) with two notions: function log and value
log(2)).

The value y(h) will be called a flow along arc h.

A flow y in the network
−→
G is in fact another edge weight, therefore

a network
−→
G with flow y can be considered as a digraph

−→
G = (V ,H, c , y) with two edge weights.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 5/22

Reserve path and augmenting path

Definition

Let
−→
G = (V ,H) is a digraph, let v , w ∈ V , let µ(v ,w) is a v–w quasi-path

in
−→
G

µ(v ,w) = (v = v1, h1, v2, . . . , vi , hi , vi+1, . . . , vk−1, hk , vk = w).

Arc hi is called a forward arc of quasi-path µ(v ,w) if hi = (vi , vi+1).
Arc hi is called a backward arc of quasi-path µ(v ,w) if hi = (vi+1, vi).

Definition

Let
−→
G = (V ,H, c, y) is a capacitated network with flow y, let v , w ∈ V .

Let µ(v ,w) is a v–w quasi-path, let h be a arc of this quasi-path.
The reserve r(h) of an arc h in a quasi-path µ(v ,w) is:

r(h) =

c(h)− y(h) if the arc h is a forward arc of µ(v ,w)

y(h)
if the arc h is a backward arc of
µ(v ,w)

(5)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 6/22

Augmenting quasi-path

Definition

The reserve r(µ(v ,w)) of quasi-path µ(v ,w) is the minimum of
reserves of arcs of this quasi-path.

A quasi-path µ(v ,w) is a reserve quasi-path if r(µ(v ,w)) > 0, i.e. if it
has positive reserve.

A reserve quasi-path µ(s, t) form source to sink is called an augmenting

quasi-path.

h1
r(h1) = 9− 3
r(h1) = 6

h2
r(h2) = 5− 0
r(h2) = 5

h3

r(h3) = 4

h4

r(h4) = 3

h5
r(h5) = 7− 2
r(h5) = 5

s t
9(3)9(3) 4(4)5(0) 7(2)

Augmenting quasi-path.
Notation 9(3) of arc h1 means that c(h1) = 9, y(h1) = 3.

The reserve of quasi-path is min{6, 5, 4, 3, 5} = 3.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 7/22

Augmenting quasi-path gives a hint how to increase the flow

Theorem

If there exists an augmenting quasi-path in the network
−→
G = (V ,H, c)

with flow y then the flow y is not maximal.

Proof.

Let µ(z , u) be an augmenting s–t quasi-path from source to sink. having
reserve r .
Let us define a new flow y′:

y′(h) =

y(h) if h /∈ µ(z , u)

y(h) + r if h is a forward arc of µ(z , u)

y(h)− r if h is a backward arc of µ(z , u)

Reserve of augmenting quasi-path was calculated as the minimum of
reserves of all arcs of this quasi-path defined by equations (9), therefore
values y′(h) of flow y′ have to fulfill (1) (i.e. y′(h) ≥ 0), (2) (i.e.
y′(h) ≤ c(h)).

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 8/22

Augmenting quasi-path gives a hint how to increase the flow

Theorem

If there exists an augmenting quasi-path in the network
−→
G = (V ,H, c)

with flow y then the flow y is not maximal.

Proof.

Let µ(z , u) be an augmenting s–t quasi-path from source to sink. having
reserve r .
Let us define a new flow y′:

y′(h) =

y(h) if h /∈ µ(z , u)

y(h) + r if h is a forward arc of µ(z , u)

y(h)− r if h is a backward arc of µ(z , u)

Reserve of augmenting quasi-path was calculated as the minimum of
reserves of all arcs of this quasi-path defined by equations (9), therefore
values y′(h) of flow y′ have to fulfill (1) (i.e. y′(h) ≥ 0), (2) (i.e.
y′(h) ≤ c(h)).

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 8/22

Flow property (3)
∑

h∈H+(v) y(h) =
∑

h∈H−(v) holds for flow y′

For flow y it holds (3):
∑

h∈H+(v)

y(h) =
∑

h∈H−(v)

y(h) for all v ∈ V , such that v 6= s, v 6= t

c)

a)

d)

b)

y′(h1) = y(h1) + r y′(h2) = y(h2) + r y′(h1) = y(h1) + r y′(h2) = y(h2)− r

y′(h1) = y(h1)− r
y′(h2) = y(h2)− r y′(h1) = y(h1)− r y′(h2) = y(h2) + r

v

v

v

v
h1h1

h1h1

h2h2

h2h2

Four possibilities of direction of arcs incident
with vertex v on aumenting quasi-path.

a) y′(h1) increases
∑

h∈H−(v) y(h) by r , y′(h2) increases
∑

h∈H+(v) y(h) by r

b) y′(h1) increases
∑

h∈H−(v) y(h) by r , y′(h2) decreases
∑

h∈H−(v) y(h) by r

c) y′(h1) decreases
∑

h∈H+(v) y(h) by r , y′(h2) decreases
∑

h∈H−(v) y(h) by r

d) y′(h1) decreases
∑

h∈H+(v) y(h) by r , y′(h2) increases
∑

h∈H+(v) y(h) by r

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 9/22

Augmenting path increases flow

First arc of augmenting quasi-path belongs to H+(s),
last arc of augmenting quasi-path belongs to H−(t).
Therefore

F (y′) =
∑

h∈H+(s)

y′(h) =
∑

h∈H+(s)

y(h) + r = F (y) + r (6)

∑

h∈H−(t)

y′(h) =
∑

h∈H−(t)

y(h) + r = F (y) + r (7)

It follows from (6), (7) that flow property (4) holds for y′ whereas
flow value F (y′) of new flow y′ is greater by r then the flow value
F (y) of old flow y.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 10/22

Ford – Fulkers maximum flow theorem

Theorem (Ford – Fulkerson)

Flow y in the network
−→
G = (V ,H, c) with source s and sink t is

the maximum flow if and only if there does not exist a s–t
augmenting quasi-path.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 11/22

Fordov–Fulkerson Max-flow algorithm

Algorithm
Fordov – Fulkerson maximum flow algorithm in a capacitated

network
−→
G = (V ,H, c).

Step 1. Take an initial feasible flow y e.g. zero flow.

Step 2. Find an augmenting quasi-path µ(s, t) in network
−→
G with

flow y.

Step 3. If there is no augmenting quasi-path in network
−→
G with

flow y then the flow y is the maximum flow.

STOP.

Step 4. If µ(s, t) is an augmenting quasi-path with reserve r then
change the flow y as follows:

y(h) :=

y(h) if h is not an arc of µ(s, t)

y(h) + r if h is a forward arc of µ(s, t)

y(h)− r ak h is a backwoard arc of µ(s, t)

GOTO Step 2.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 12/22

Fordov–Fulkerson Max-flow algorithm

Algorithm
Fordov – Fulkerson maximum flow algorithm in a capacitated

network
−→
G = (V ,H, c).

Step 1. Take an initial feasible flow y e.g. zero flow.

Step 2. Find an augmenting quasi-path µ(s, t) in network
−→
G with

flow y.

Step 3. If there is no augmenting quasi-path in network
−→
G with

flow y then the flow y is the maximum flow.

STOP.

Step 4. If µ(s, t) is an augmenting quasi-path with reserve r then
change the flow y as follows:

y(h) :=

y(h) if h is not an arc of µ(s, t)

y(h) + r if h is a forward arc of µ(s, t)

y(h)− r ak h is a backwoard arc of µ(s, t)

GOTO Step 2.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 12/22

Fordov–Fulkerson Max-flow algorithm

Algorithm
Fordov – Fulkerson maximum flow algorithm in a capacitated

network
−→
G = (V ,H, c).

Step 1. Take an initial feasible flow y e.g. zero flow.

Step 2. Find an augmenting quasi-path µ(s, t) in network
−→
G with

flow y.

Step 3. If there is no augmenting quasi-path in network
−→
G with

flow y then the flow y is the maximum flow.

STOP.

Step 4. If µ(s, t) is an augmenting quasi-path with reserve r then
change the flow y as follows:

y(h) :=

y(h) if h is not an arc of µ(s, t)

y(h) + r if h is a forward arc of µ(s, t)

y(h)− r ak h is a backwoard arc of µ(s, t)

GOTO Step 2.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 12/22

Fordov–Fulkerson Max-flow algorithm

Algorithm
Fordov – Fulkerson maximum flow algorithm in a capacitated

network
−→
G = (V ,H, c).

Step 1. Take an initial feasible flow y e.g. zero flow.

Step 2. Find an augmenting quasi-path µ(s, t) in network
−→
G with

flow y.

Step 3. If there is no augmenting quasi-path in network
−→
G with

flow y then the flow y is the maximum flow.

STOP.

Step 4. If µ(s, t) is an augmenting quasi-path with reserve r then
change the flow y as follows:

y(h) :=

y(h) if h is not an arc of µ(s, t)

y(h) + r if h is a forward arc of µ(s, t)

y(h)− r ak h is a backwoard arc of µ(s, t)

GOTO Step 2.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 12/22

Algorithm to find an augmenting quasi-path

Algorithm

Algorithm to find an augmenting quasi-path µ(z , u) in the

capacitated
−→
G = (V ,H, c) with flow y.

Assign a label x(i) to all vertices i ∈ V with following meaning:

If x(i) = ∞, then no reserve s–i quasi-path was found till now.

If x(i) < ∞, then there exist a reserve s–i quasi-path having last
but on vertex equal to |x(i)| (absolte velue of x(i)).

If moreover x(i) > 0, then the last arc of this quasi-path is forward
arc (x(i), i).

If x(i) < 0, then the last arc of this quasi-path is bacward arc
(i , x(i)).

Set x(s) := 0 for source s.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 13/22

Algorithm to find an augmenting quasi-path

Algorithm

Algorithm to find an augmenting quasi-path µ(z , u) in the

capacitated
−→
G = (V ,H, c) with flow y.

Assign a label x(i) to all vertices i ∈ V with following meaning:

If x(i) = ∞, then no reserve s–i quasi-path was found till now.

If x(i) < ∞, then there exist a reserve s–i quasi-path having last
but on vertex equal to |x(i)| (absolte velue of x(i)).

If moreover x(i) > 0, then the last arc of this quasi-path is forward
arc (x(i), i).

If x(i) < 0, then the last arc of this quasi-path is bacward arc
(i , x(i)).

Set x(s) := 0 for source s.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 13/22

Algorithm to find an augmenting quasi-path

Algorithm

Algorithm to find an augmenting quasi-path µ(z , u) in the

capacitated
−→
G = (V ,H, c) with flow y.

Assign a label x(i) to all vertices i ∈ V with following meaning:

If x(i) = ∞, then no reserve s–i quasi-path was found till now.

If x(i) < ∞, then there exist a reserve s–i quasi-path having last
but on vertex equal to |x(i)| (absolte velue of x(i)).

If moreover x(i) > 0, then the last arc of this quasi-path is forward
arc (x(i), i).

If x(i) < 0, then the last arc of this quasi-path is bacward arc
(i , x(i)).

Set x(s) := 0 for source s.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 13/22

Algorithm to find an augmenting quasi-path

Algorithm

Algorithm to find an augmenting quasi-path µ(z , u) in the

capacitated
−→
G = (V ,H, c) with flow y.

Assign a label x(i) to all vertices i ∈ V with following meaning:

If x(i) = ∞, then no reserve s–i quasi-path was found till now.

If x(i) < ∞, then there exist a reserve s–i quasi-path having last
but on vertex equal to |x(i)| (absolte velue of x(i)).

If moreover x(i) > 0, then the last arc of this quasi-path is forward
arc (x(i), i).

If x(i) < 0, then the last arc of this quasi-path is bacward arc
(i , x(i)).

Set x(s) := 0 for source s.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 13/22

Algorithm to find an augmenting quasi-path

Algorithm (– continuation)

Denote::

E – the set of vertices with finite label x() the neighborhood of
which is not explored till now.

If i ∈ E then there exists a reserve s–i quasi-path and there is
a chance that this quasi-path can be extended by one arc.

Remark
The set E has similar finction as the set E in label set a label correct
algorithm.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 14/22

Algorithm to find an augmenting quasi-path

Algorithm (– continuation)

Denote::

E – the set of vertices with finite label x() the neighborhood of
which is not explored till now.

If i ∈ E then there exists a reserve s–i quasi-path and there is
a chance that this quasi-path can be extended by one arc.

Remark
The set E has similar finction as the set E in label set a label correct
algorithm.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 14/22

Algorithm to find an augmenting quasi-path

Algorithm (– continuation)

Denote::

E – the set of vertices with finite label x() the neighborhood of
which is not explored till now.

If i ∈ E then there exists a reserve s–i quasi-path and there is
a chance that this quasi-path can be extended by one arc.

Remark
The set E has similar finction as the set E in label set a label correct
algorithm.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 14/22

Algorithm to find an augmenting quasi-path

Algorithm (– continuation)
Step 1. Initialization.
E := {s}.
Set x(s) := 0 and for all i ∈ V , i 6= s set x(i) := ∞.

Step 2. If x(t) < ∞, create augmenting s–t quasi-path using labels
|x()|:

(s = |x (k)(t)|, |x (k−1)(t)|, . . . , |x (2)(t)|, |x(t)|, t,)

and STOP.

Step 3. If E = ∅, then there there does not exist an augmenting
quasi-path µ(s, t).
STOP.

Step 4. Extract a vertex i ∈ E from E . Set E := E − {i}.

For every vertex j ∈ V+(i) such that x(j) = ∞ do:

If y(i , j) < c(i , j), then set x(j) := i , E := E ∪ {j}.

For every vertex j ∈ V−(i) such that x(j) = ∞ do:

If y(j , i) > 0, then set x(j) := −i , E := E ∪ {j}.

GOTO Step 2.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 15/22

Algorithm to find an augmenting quasi-path

Algorithm (– continuation)
Step 1. Initialization.
E := {s}.
Set x(s) := 0 and for all i ∈ V , i 6= s set x(i) := ∞.

Step 2. If x(t) < ∞, create augmenting s–t quasi-path using labels
|x()|:

(s = |x (k)(t)|, |x (k−1)(t)|, . . . , |x (2)(t)|, |x(t)|, t,)

and STOP.

Step 3. If E = ∅, then there there does not exist an augmenting
quasi-path µ(s, t).
STOP.

Step 4. Extract a vertex i ∈ E from E . Set E := E − {i}.

For every vertex j ∈ V+(i) such that x(j) = ∞ do:

If y(i , j) < c(i , j), then set x(j) := i , E := E ∪ {j}.

For every vertex j ∈ V−(i) such that x(j) = ∞ do:

If y(j , i) > 0, then set x(j) := −i , E := E ∪ {j}.

GOTO Step 2.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 15/22

Algorithm to find an augmenting quasi-path

Algorithm (– continuation)
Step 1. Initialization.
E := {s}.
Set x(s) := 0 and for all i ∈ V , i 6= s set x(i) := ∞.

Step 2. If x(t) < ∞, create augmenting s–t quasi-path using labels
|x()|:

(s = |x (k)(t)|, |x (k−1)(t)|, . . . , |x (2)(t)|, |x(t)|, t,)

and STOP.

Step 3. If E = ∅, then there there does not exist an augmenting
quasi-path µ(s, t).
STOP.

Step 4. Extract a vertex i ∈ E from E . Set E := E − {i}.

For every vertex j ∈ V+(i) such that x(j) = ∞ do:

If y(i , j) < c(i , j), then set x(j) := i , E := E ∪ {j}.

For every vertex j ∈ V−(i) such that x(j) = ∞ do:

If y(j , i) > 0, then set x(j) := −i , E := E ∪ {j}.

GOTO Step 2.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 15/22

Algorithm to find an augmenting quasi-path

Algorithm (– continuation)
Step 1. Initialization.
E := {s}.
Set x(s) := 0 and for all i ∈ V , i 6= s set x(i) := ∞.

Step 2. If x(t) < ∞, create augmenting s–t quasi-path using labels
|x()|:

(s = |x (k)(t)|, |x (k−1)(t)|, . . . , |x (2)(t)|, |x(t)|, t,)

and STOP.

Step 3. If E = ∅, then there there does not exist an augmenting
quasi-path µ(s, t).
STOP.

Step 4. Extract a vertex i ∈ E from E . Set E := E − {i}.

For every vertex j ∈ V+(i) such that x(j) = ∞ do:

If y(i , j) < c(i , j), then set x(j) := i , E := E ∪ {j}.

For every vertex j ∈ V−(i) such that x(j) = ∞ do:

If y(j , i) > 0, then set x(j) := −i , E := E ∪ {j}.

GOTO Step 2.
♣

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 15/22

Way how to set labels for vertices of V+(i), V+(i)

4(2)4(2)

4(0) 4(0)

4(4) 4(4)

label x() can not be changed

label x() can not be changed

−i

−i +i

+i

i

∞

∞

Way how to set labels for vertices of V+(i), V+(i).
Symbol 4(2) means that corresponding arc has capacity 4

and flow 2 flows along this arc.
Green circles represent vertices of the set V+(i),
Red circles represent vertices of the set V−(i).

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 16/22

Example – searching for an augmenting path

4(4)

6(0)
4(4)

5(0)

8(4)
1

3

2

4

N = {2, 3, 4}
E = {1}, E = E − {1}, i = 1 V+(1) ∩N = {2, 3}, V−(1) ∩ N = { }

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 17/22

Example – searching for an augmenting path

4(4)

6(0)
4(4)

5(0)

8(4)
1

3

2

4

+1

N = N − {3} = {2, 4}
E = {3}, E = E − {3}, i = 3 V+(3) ∩N = {4}, V−(3) ∩ N = {2}

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 17/22

Example – searching for an augmenting path

4(4)

6(0)
4(4)

5(0)

8(4)
1

3

2

4

+1

−3
N = N − {2} = {4}
E = {2}, E = E − {2}, i = 2 V+(2) ∩N = {4}, V−(2) ∩ N = { }

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 17/22

Example – searching for an augmenting path

4(4)

6(0)
4(4)

5(0)

8(4)
1

3

2

4

+1

−3

+2

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 17/22

Example – searching for an augmenting path

4(4)

6(0)
4(4)

5(0)

8(4)
1

3

2

4

+1

−3

+2

Augmenting quasi-path is (1, (1, 3), (2, 3), 2, (2, 4), 4).
Reserve of arc (1, 3) is 6, reserve of arc (2, 3) is 4, reserve of arc (2, 4) is 5.

Reserve of augmenting quasi-path is min{6, 4, 5} = 4.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 17/22

Example – searching for an augmenting path

4(4)

6(0)
4(4)

5(0)

8(4)
1

3

2

4

+1

−3

+2

6(4)

8(0)

5(4)

Augmenting quasi-path is (1, (1, 3), (2, 3), 2, (2, 4), 4).
Reserve of arc (1, 3) is 6, reserve of arc (2, 3) is 4, reserve of arc (2, 4) is 5.

Reserve of augmenting quasi-path is min{6, 4, 5} = 4.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 17/22

Minimum cost maximum flow

Definition

Let
−→
G = (V ,H, c , d) be a capacitated network where d(h) is another arc

weight of arc h representing the cost for a flow unit transported along
arc h.
Let y be a flow in the capacitated network

−→
G .

The cost of flow y is defined as:

D(y) =
∑

h∈H

d(h).y(h)

Definition
The minimum cost flow with flow value F is the flow with value F
which has the least cost from all flows with flow value F .

Remark
The maximum cost flow can be defined similarly.

Remark
Very often problem is to find minimum cost flow having maximum value
– Min-Cos-Max-Flow problem.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 18/22

Minimum cost maximum flow

Definition

Let
−→
G = (V ,H, c , d) be a capacitated network where d(h) is another arc

weight of arc h representing the cost for a flow unit transported along
arc h.
Let y be a flow in the capacitated network

−→
G .

The cost of flow y is defined as:

D(y) =
∑

h∈H

d(h).y(h)

Definition
The minimum cost flow with flow value F is the flow with value F
which has the least cost from all flows with flow value F .

Remark
The maximum cost flow can be defined similarly.

Remark
Very often problem is to find minimum cost flow having maximum value
– Min-Cos-Max-Flow problem.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 18/22

Minimum cost maximum flow

Definition

Let
−→
G = (V ,H, c , d) be a capacitated network where d(h) is another arc

weight of arc h representing the cost for a flow unit transported along
arc h.
Let y be a flow in the capacitated network

−→
G .

The cost of flow y is defined as:

D(y) =
∑

h∈H

d(h).y(h)

Definition
The minimum cost flow with flow value F is the flow with value F
which has the least cost from all flows with flow value F .

Remark
The maximum cost flow can be defined similarly.

Remark
Very often problem is to find minimum cost flow having maximum value
– Min-Cos-Max-Flow problem.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 18/22

Reserve of an arc in quasi-cycle, rezerve quasi-cycle

Definition

Let
−→
G = (V ,H, c , d) be a capacitated network with flow y, let C be

a quasi-cycle in
−→
G .

Reserve r(h) of an arc h in quasi-cycle C is

r(h) =

{

c(h)− y(h) if arc h is a forward arc of C

y(h) if arc h is a backward arc of C

Reserve of quasi-cycle C is the minimum of reserves of its arcs.

Quasi-cycle C is called a reserve quasi-cycle if its reserve is positive.

The cost d(C) of quasi-cycle C is defined as total sum weights d() of
its forward arcs minus total sum of weights d() of its backward arcs.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 19/22

Reserve of an arc in quasi-cycle, rezerve quasi-cycle

Definition

Let
−→
G = (V ,H, c , d) be a capacitated network with flow y, let C be

a quasi-cycle in
−→
G .

Reserve r(h) of an arc h in quasi-cycle C is

r(h) =

{

c(h)− y(h) if arc h is a forward arc of C

y(h) if arc h is a backward arc of C

Reserve of quasi-cycle C is the minimum of reserves of its arcs.

Quasi-cycle C is called a reserve quasi-cycle if its reserve is positive.

The cost d(C) of quasi-cycle C is defined as total sum weights d() of
its forward arcs minus total sum of weights d() of its backward arcs.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 19/22

Reserve of an arc in quasi-cycle, rezerve quasi-cycle

Definition

Let
−→
G = (V ,H, c , d) be a capacitated network with flow y, let C be

a quasi-cycle in
−→
G .

Reserve r(h) of an arc h in quasi-cycle C is

r(h) =

{

c(h)− y(h) if arc h is a forward arc of C

y(h) if arc h is a backward arc of C

Reserve of quasi-cycle C is the minimum of reserves of its arcs.

Quasi-cycle C is called a reserve quasi-cycle if its reserve is positive.

The cost d(C) of quasi-cycle C is defined as total sum weights d() of
its forward arcs minus total sum of weights d() of its backward arcs.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 19/22

Ford Fulkerson Min-Cost-Max-Flow Theorem

Theorem

Flow y in the capacitated network
−→
G = (V ,H, c , d) is the

minimum cost flow of its flow value if and only if there does not

exist a reserve quasi-cycle with negative cost in
−→
G .

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 20/22

Algorithm to find minimum cost flow

Algorithm
Algorithm to find minimum cost flow with given value

in capacitated network
−→
G = (V ,H, c , d).

Step 1. Start with flow y having given value in the network
−→
G = (V ,H, c , d).

Step 2. Find a reserve quasi-cycle with negative cost in the network
−→
G with flow y or find out that such a quasi-cycle does not exist.

Step 3. If there does not exist a reserve quasi-cycle with negative
cost then the flow y is minimum cost flow with its flow value. STOP.

Step 4. If a reserve quasi-cycle C with negative cost does exist then
denote by r its reserve and change the flow y as follows:

y(h) :=

y(h) if h is not an arc of C

y(h) + r if h is a forward arc of C

y(h)− r if h is a backward arc of C

GOTO Step 2.
♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 21/22

Algorithm to find minimum cost flow

Algorithm
Algorithm to find minimum cost flow with given value

in capacitated network
−→
G = (V ,H, c , d).

Step 1. Start with flow y having given value in the network
−→
G = (V ,H, c , d).

Step 2. Find a reserve quasi-cycle with negative cost in the network
−→
G with flow y or find out that such a quasi-cycle does not exist.

Step 3. If there does not exist a reserve quasi-cycle with negative
cost then the flow y is minimum cost flow with its flow value. STOP.

Step 4. If a reserve quasi-cycle C with negative cost does exist then
denote by r its reserve and change the flow y as follows:

y(h) :=

y(h) if h is not an arc of C

y(h) + r if h is a forward arc of C

y(h)− r if h is a backward arc of C

GOTO Step 2.
♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 21/22

Algorithm to find minimum cost flow

Algorithm
Algorithm to find minimum cost flow with given value

in capacitated network
−→
G = (V ,H, c , d).

Step 1. Start with flow y having given value in the network
−→
G = (V ,H, c , d).

Step 2. Find a reserve quasi-cycle with negative cost in the network
−→
G with flow y or find out that such a quasi-cycle does not exist.

Step 3. If there does not exist a reserve quasi-cycle with negative
cost then the flow y is minimum cost flow with its flow value. STOP.

Step 4. If a reserve quasi-cycle C with negative cost does exist then
denote by r its reserve and change the flow y as follows:

y(h) :=

y(h) if h is not an arc of C

y(h) + r if h is a forward arc of C

y(h)− r if h is a backward arc of C

GOTO Step 2.
♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 21/22

Algorithm to find minimum cost flow

Algorithm
Algorithm to find minimum cost flow with given value

in capacitated network
−→
G = (V ,H, c , d).

Step 1. Start with flow y having given value in the network
−→
G = (V ,H, c , d).

Step 2. Find a reserve quasi-cycle with negative cost in the network
−→
G with flow y or find out that such a quasi-cycle does not exist.

Step 3. If there does not exist a reserve quasi-cycle with negative
cost then the flow y is minimum cost flow with its flow value. STOP.

Step 4. If a reserve quasi-cycle C with negative cost does exist then
denote by r its reserve and change the flow y as follows:

y(h) :=

y(h) if h is not an arc of C

y(h) + r if h is a forward arc of C

y(h)− r if h is a backward arc of C

GOTO Step 2.
♣Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 21/22

Example - searching for minimum cost flow

5(5)

4(4)

4(2)

9(1)

9(8)

5(2)

6(1)

8(5)

1

2

3

5

8

5

3

7

21

6

4
2

9

Flow in the network has cost:

D(y) = 5.4 + 8.5 + 3.2 + 9.2 + 2.5 + 1.1 + 2.1 + 7.8 = 153

Reserve quasi-cycle found: (6, (4, 6), 4, (5, 4), 5, (5, 6), 6) with reserve 1
and negative cost −7− 1 + 2 = −6.
New flow in the network has cost

D(y) = 5.4 + 8.5 + 3.2 + 9.2 + 2.5 + 1.0 + 2.2 + 7.7 = 147

Reserve quasi-cycle found: (6, (4, 6), 4, (2, 4), 2, (2, 5), 5, (5, 6), 6) with reserve
2 and negative cost −7− 9 + 3 + 2 = −11.
New flow in the network has cost

D(y) = 5.4 + 8.5 + 3.4 + 9.0 + 2.5 + 1.0 + 2.4 + 7.5 = 125

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 22/22

Example - searching for minimum cost flow

1

2

3

5

8

5

3

7

21

6

4
2

9
9(0)

6(2)

9(7)

4(4)

5(5)

5(2)

4(2)

6(1)

9(1)

9(8)8(5)
Flow in the network has cost:

D(y) = 5.4 + 8.5 + 3.2 + 9.2 + 2.5 + 1.1 + 2.1 + 7.8 = 153

Reserve quasi-cycle found: (6, (4, 6), 4, (5, 4), 5, (5, 6), 6) with reserve 1
and negative cost −7− 1 + 2 = −6.
New flow in the network has cost

D(y) = 5.4 + 8.5 + 3.2 + 9.2 + 2.5 + 1.0 + 2.2 + 7.7 = 147

Reserve quasi-cycle found: (6, (4, 6), 4, (2, 4), 2, (2, 5), 5, (5, 6), 6) with reserve
2 and negative cost −7− 9 + 3 + 2 = −11.
New flow in the network has cost

D(y) = 5.4 + 8.5 + 3.4 + 9.0 + 2.5 + 1.0 + 2.4 + 7.5 = 125

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 22/22

Example - searching for minimum cost flow

1

2

3

5

8

5

3

7

21

6

4
2

95(2)

5(5)

4(4)

9(0)

6(2)

9(7)
8(7)

4(2) 4(4)

6(4)

9(5)

5(0)

Flow in the network has cost:

D(y) = 5.4 + 8.5 + 3.2 + 9.2 + 2.5 + 1.1 + 2.1 + 7.8 = 153

Reserve quasi-cycle found: (6, (4, 6), 4, (5, 4), 5, (5, 6), 6) with reserve 1
and negative cost −7− 1 + 2 = −6.
New flow in the network has cost

D(y) = 5.4 + 8.5 + 3.2 + 9.2 + 2.5 + 1.0 + 2.2 + 7.7 = 147

Reserve quasi-cycle found: (6, (4, 6), 4, (2, 4), 2, (2, 5), 5, (5, 6), 6) with reserve
2 and negative cost −7− 9 + 3 + 2 = −11.
New flow in the network has cost

D(y) = 5.4 + 8.5 + 3.4 + 9.0 + 2.5 + 1.0 + 2.4 + 7.5 = 125

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 22/22

Example - searching for minimum cost flow

1

2

3

5

8

5

3

7

21

6

4
2

9

4(4)

5(5)

5(0)

4(4)

6(4)

9(0)

9(5)8(5)
Flow in the network has cost:

D(y) = 5.4 + 8.5 + 3.2 + 9.2 + 2.5 + 1.1 + 2.1 + 7.8 = 153

Reserve quasi-cycle found: (6, (4, 6), 4, (5, 4), 5, (5, 6), 6) with reserve 1
and negative cost −7− 1 + 2 = −6.
New flow in the network has cost

D(y) = 5.4 + 8.5 + 3.2 + 9.2 + 2.5 + 1.0 + 2.2 + 7.7 = 147

Reserve quasi-cycle found: (6, (4, 6), 4, (2, 4), 2, (2, 5), 5, (5, 6), 6) with reserve
2 and negative cost −7− 9 + 3 + 2 = −11.
New flow in the network has cost

D(y) = 5.4 + 8.5 + 3.4 + 9.0 + 2.5 + 1.0 + 2.4 + 7.5 = 125

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Flows in networks 22/22

